簡易檢索 / 詳目顯示

研究生: 謝匡宇
Kuang-Yu Hsieh
論文名稱: 研究雜訊準位為-90dBc的500MHz高頻轉換器
Exploring of a 500 MHz RF Transmitter with –90dBc Noise Level
指導教授: 朱國瑞
Kwo-Ray Chu
王兆恩
Choaen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 60
中文關鍵詞: 高頻共振腔超導共振腔速調管陰極電壓陽極電壓高頻濾波器
外文關鍵詞: rf, cavity, rf superconductor cavity, klystron, cathod voltage, anode voltage, rf filter
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 同步輻射光的品質與儲存電子的穩定性有很大的關係。儲存電子通過高頻共振腔時,可以補充運轉時所輻射損失的能量,高頻共振腔的能量由RF transmitter所提供。RF transmitter產生500MHz高功率高頻輸出能量,在共振腔內建立加速電場;但同時,系統本身的雜訊也會與500MHz高頻訊號一起傳送到共振腔。這些雜訊會造成電子的擾動。文章內將對RF transmitter的訊號源,陰極電壓,加速級電壓作診斷,並提出解決辦法。經過一些努力,RF transmitter的輸出品質在120Hz以上已經達到了我們的要求。
    另外為了解超導共振腔功率偶合器內電子雪崩(multipacting)放電現象,我們設計了高功率高頻阻抗模擬器。超導共振腔由於wall loss很小,在有beam loading的情況下反射係數的變動非常大,使得偶合器內的電子雪崩放電現象較難事先掌握。我們設計的高功率高頻阻抗模擬器可以相當大範圍地改變反射係數的大小及相位,可以模擬超導共振腔在beam loading時的反射情形,進而對電子雪崩放電現象有更深的了解。


    第一章 緒論 1-1電子能量補充機制 (高頻系統) 1 1-2高品質的高頻系統 2 第二章 高頻系統及電子槍放大器(速調管) 2-1高頻系統介紹 3 2-2 RF訊號源、高壓設備介紹 5 2-2-1 RF訊號源 2-2-2 高壓設備 2-3 速調管 7 2-3-1 速調管的歷史 2-3-2 速調管內部元件介紹 2-4 速調管工作原理 10 2-4-1 控制電子束的行進方向 2-4-2 Beam-Gap Interaction 第三章 高頻訊號源及陽極電壓診斷 3-1 高頻訊號源診斷 19 3-2 陽極電壓研究 23 3-3 陽極電壓濾波器 26 3-4 其他量測(聚焦磁鐵及加熱器) 30 第四章 陰極電壓的研究 4-1 陰極電壓小訊號模型 32 4-2 交流穩壓器 35 4-3 陰極電壓濾波器 37 第五章 結論 47 Reference 1 48 附錄 發展可測試電子雪崩放電現象的高功率 高頻阻抗模擬器 49 Reference 2 59

    Reference 1
    [1] A.S. Gilmour, “Principle of Traveling Wave Tubes”, with corrections, revisions and additions,September 1999.Artech House,Inc.,1994
    [2] M. Hara, T. Nakamura, T. Ohshima,“A ripple Effect of a Klystron Power Supply on Synchrotron Oscillation”, Particle Accelerator, Vol. 59, pp. 143-156。
    [3] M. Hara et.al., "Coherent Synchrotron Oscillation Excited by a Ripple of a Klystron Power Supply", Proceedings of the 2001 Particle Accelerator Conference, PAC01
    [4] A. Mosnier, F. Orsini, B. Phung, “Analysis of the Heavily Beam-loaded Soleil RF System”, Proceedings of the 2001 Particle Accelerator Conference, EPAC98, pp.1720-1722.
    [5] C.C.Lo, B. Taylor and K. Baptiste, “The Amplitude and Phase Control of the ALS Storage Ring RF System”, Proceedings of the 2001 Particle Accelerator Conference, IEEE PAC95.
    [6] R.E. Collin, “Foundations for Microwave Engineering”,Mcgraw-Hill,1992
    [7] J.W. Gewartowski, H.A. Watson, “Principles of Electron Tubes”, Bell Telephone laboratories,
    [8] 鄭復興, “Ka頻段高功率分佈作用放大器之研究”, 碩士論文, 國立清華大學, 中華民國, R.O.C., 2001

    Reference 2
    [1] P. T. Farnsworth, “Television by Electron Image Scanning,” J. Franklin Institute 218 (1934) 411.
    [2] A. J. Hatch and H. B. Williams, “Multipacting Mode of Gaseous Breakdown,” Physical Review 112 (1958) 681.
    [3] J. R. M. Vaughan, “Multipactor,” IEEE Trans. ED-35 (1988) 1172.
    [4] R. A. Kishek et al., “Multipactor Discharge on Metals and Dielectrics: Historical Review and Recent Theories,” Physics of Plasmas 5 (1998) 2120.
    [5] S. Belomestnykh et al., “The high luminosity performance of CESR with the new generation superconducting cavity,” Proceedings of the 1999 Particle Accelerator Conference, New York City, USA, 1999, p. 272.
    [6] S. Mitsunobu et al., “Status and Development of Superconducting Cavity for KEKB,” Proceedings of the 1997 Particle Accelerator Conference, Vancouver, B.C., Canada 1997, p. 2908.
    [7] H. Padamsee et al., “Field strength limitations in superconducting cavities-multipacting and thermal breakdown,”IEEE Trans. Magn.17 (1981) 947.
    [8] E. Chojnacki, “Simulations of a Multipactor-Inhibited Waveguide Geometry,” Phys. Rev. ST Accel. Beams 3 (2000) 032001.
    [9] R. L. Geng et al., “Suppression of Multipacting in Rectangular Coupler Waveguides,” Nucl. Instr. Meth. A 508 (2003) 227.
    [10] P. Ylae-Oijala and M. Ukkola, “Suppression Electron Multipacting in Ceramic Windows by DC Bias,” Nucl. Instr. Meth. A 474 (2001) 197.
    [11] D. Boussard, private communications.
    [12] V. Semenov et al., “Multipactor Suppression in Amplitude Modulated Radio Frequency Fields,” Phys. Plasmas 8 (2001) 5034.
    [13] I. Bojko et al., “Influence of Air Exposures and Thermal Treatments on the Secondary Electron Yield of Copper,” J. Vac. Sci. Technol. A 18 (2000) 972.
    [14] S. Belomestnykh, private communication.
    [15] T. Furura, private communication.
    [16] H. Padamsee et al., “Design Challenges for High Current Storage Rings,” Part. Accel. 40 (1992) 17.
    [17] H. Padamsee, “Superconducting RF-New Directions,” Proceedings of the 2001 Particle Accelerator Conference, Chicago, USA, 2001, p. 468.
    [18] Ch. Wang et al., “Superconducting RF Project at the Synchrotron Radiation Research Center,” 10th Workshop on RF Superconductivity, Tsukuba, Japan, 2001, p. 34.
    [19] H. Wiedemann, “Particle Accelerator Physics II,” Chap. 6, Springer, 1995.
    [20] O. P. Gandhi, “Microwave Engineering and Applications,” p.190, Pergamon Press, 1981.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE