簡易檢索 / 詳目顯示

研究生: 江釩天
Jiang, Fan-Tian.
論文名稱: 電流浸潤和光浸潤對銅銦鎵硒太陽能電池的效率優化
Optimizing the efficiency of CIGS solar cell by current soaking and light soaking
指導教授: 甘炯耀
Gan, Jon-Yiew
口試委員: 賴志煌
Lai, Chih-Haung
徐偉倫
Xu, Wei Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 銅銦鎵硒太陽能電池電流浸潤光浸潤串聯電阻TCO片電阻M-TLM 結構
外文關鍵詞: Current soaking
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們的實驗主要在探討CIGS太陽能電池受到電流浸潤(Current Soaking)和光浸潤(Light Soaking)後效率的提升,其中光浸潤在120分鐘後效率(Eff%)從14.02%提升14.87%,提升約6% ; 而電流浸潤60分鐘後Eff%從14.14%提升到15.59%,提升近10.2%。
    在影響電池性能的主要參數方面:光浸潤後,FF提升了6.43%,Voc提升了1% ; 電流浸潤後,FF提升了6.45%,Voc提升了2%。
    論文的主題有以下幾項:
    (1)光浸潤和電流浸潤的差異 ; (2)電流浸潤在串聯電池效率上面的提升 ; (3)電流浸潤後在電池效率提升上的飽和 ;(4)不同比例電流值給予電流浸潤後的變化 ; (5)電流浸潤後的時效量測 ; (6)光浸潤和電流浸潤後對窗口層產生的影響 ; (7) 光浸潤和電流浸潤後電池在霍爾效應量測上面電性的變化。
    本論文對現今光伏產業的貢獻在於,一般在電池要出廠前通常會透過光浸潤的方式來對性能進一步的提升,而從實驗得知:電流浸潤的在細部電池參數的提升上效果是更好的,而這種後續的優化方式,也已找出最佳的作用時間,可以提供現行太陽能公司一個低成本,且有效快速的提升方式。


    Our experiment mainly discuss the improvement of the efficiency of CIGS thin film solar cells after current soaking and light soaking. The efficiency of light soaking after 120 minutes grow from 14.02% to 14.87%,an increased by 6 %; After 60 minutes of current soaking, the efficiency increased from 14.14% to 15.59%, an increased by nearly 10.2%.
    In terms of the main parameters affecting the performance of solar cell: After light soaking, 6.43% increase in FF and 1% increase in Voc; after current soaking, 6.45% increase in FF and 2% increase in Voc.
    The topics of this paper are as follows:(1) The difference between light soaking and current soaking. (2) The improvement of current soaking on the solar cell in series.(3) The saturation of efficiency of solar cell after current soaking.(4) The change in the performance of solar cell after current soaking with different ratios of initial short circuit current values. (5) Aging measurement of solar cell after current soaking; (6) The effect of light soaking and current soaking on the window layer; (7) The electrical characteristic changes of the solar cell on the Hall effect measurement after light soaking and current soaking.
    The contribution of this paper to the photovoltaic industry is that before the solar cell leaves the factory, the performance is usually improved through light soaking, and it is known from the experiment that the current soaking has a better performance on solar cell. And this follow-up optimization method has also found the best working time, which can provide the solar energy company with a low-cost, effective and rapid improvement method.

    第一章 前言與研究動機 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 7 2.1 太陽能電池的基本原理 8 2.2 太陽能電池的電路模型 9 2.3 太陽能電池的性能參數 11 2.3.1 短路電流(short-circuit current) 12 2.3.2 開路電壓(Open-circuit Voltage) 13 2.3.3 串聯電阻(Series resistance)和分流電阻(Shunt resistance) 13 2.3.4 太陽能電池的填充因子 14 2.3.5 太陽能電池的光電轉換效率 14 2.3.6 太陽能電池的量子效率 15 2.4 CIGS太陽能電池的發展史 15 2.4.1 CIGS太陽能電池的優點 16 2.4.2 CIGS太陽能電池的結構 16 2.4.3 CIGS太陽能電池模組 21 2.5常見量測技術 22 2.5.1 片電阻 22 2.5.2 四點探針 22 2.5.3 Transfer length method (TLM) 結構的量測方法 23 2.5.4 Van der Pauw 量測方法 25 2.5.5 霍爾效應的量測 26 第三章、實驗方法與串聯電阻計算過程 28 3.1 試片準備 28 3.2 EQE (External quantum efficiency)的量測 29 3.3 Light I-V curve的量測 30 3.4 Rs 的計算 31 3.5 M-TLM 的計算 32 第四章、電流和光浸潤 34 4.1 光浸潤對太陽能電池的提升 34 4.2 電流浸潤在串聯太陽能電池上的可行性 35 4.3 電流浸潤對太陽能電池的提升 37 4.4 在不同天量測時的短路電流密度的擾動 38 4.5 電流浸潤與光浸潤的比較 40 第五章、浸潤的最佳化 47 5.1 電流浸潤在太陽能電池效率上的飽和 47 5.2 飽和的機制 48 5.3 不同電流(Isc)比例下的浸潤效果 48 5.4 電流浸潤與時間優化 49 第六章、電流浸潤和光浸潤的機制差異探討 51 6.1 光浸潤作用和霍爾效應量測 51 6.2 光浸潤作用和M-TLM結構量測 52 6.3 灌進電流到TCO和M-TLM結構的量測 57 6.4 TCO和霍爾效應量測 59 第七章、電流浸潤和開路電壓的提升機制 62 7.1 開路電壓的提升 62 7.2 順向電流的作用 63 7.3 Minority carrier的注入與增加 64 7.4 Majority carrier 64 第八章、結論 65

    U.S. Energy Information Administration | Levelized Costs of New
    Generation Resources in the Annual Energy Outlook (2021)
    NREL Transforming ENERGY, Photovoltaic Research, Best Research-
    Cell Efficiency Chart (2021)
    Martin A. Green, Solar cell efficiency tables (version 56), Prog Photovoltaic Res Appl. 28:629–638. (2020)
    Repins I, Glynn S, Silverman TJ, et al. Large metastability in Cu (In,Ga)Se2 devices: The importance of buffer properties. Prog Photovolt Res Appl. 27:749–759. (2019)
    S.J. Heise⁎ , V. Gerliz, M.S. Hammer, J. Ohland, J. Keller1 , I. Hammer-
    Riedel, Light-induced changes in the minority carrier diffusion length of
    Cu(In,Ga) Se2 absorber material, Solar Energy Materials & Solar Cells (2017)
    D. Willett and S. Kuriyagawa, "The effects of sweep rate, voltage bias and light soaking on the measurement of CIS-based solar cell characteristics," Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference – (1993)
    李昱德, "銅銦鎵硒太陽能模組電池之串聯電阻量測方法設計與分析應用
    "碩士, 材料科學工程學系, 國立清華大學,(2020)

    周哲寬, "CuGa和In雙靶共濺鍍前驅層後硒化法製作銅銦鎵硒太陽能電池吸收層之研究與太陽能電池的擬合和模擬程式之製作," 碩士, 材料科學工程學系, 國立清華大學, 新竹市, (2019)
    Ju-Heon Yoon, Characterization of efficiency-limiting resistance losses in monolithically integrated Cu(In,Ga)Se2 solar modules, SCIENTIFIC REPORTS (2015)
    N. T. a. E. S. o. Sandia. Single Diode Equivalent Circuit Models. (2018) Available: https://pvpmc.sandia.gov/modeling-steps/2- dc-module-iv/diode-equivalent-circuit-models/
    Y. J. P. E.-C. T. Tao and Applications, "Screen‐Printed Front Junction n‐Type Silicon Solar Cells," 2016.
    PV Education. (2019). Double Diode Model. Available: https://www.pveducation.org/pvcdrom/characterisation/double-diode-model
    Solar Energy, Solar Cell Parameters and Equivalent Circuit,Chapter 9
    W. Shockley and H. J. J. J. o. a. p. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," vol. 32, no. 3, pp. 510-519, (1961)
    Martin A.Green, Solar cell fill factors: General graph and empirical expressions, Solid State Electronics, Volume 24, Issue 8, p. 788-789.(1981)
    Jeyakumar Ramanujam, Copper indium gallium selenide based solar cells – a review, : Energy Environ. Sci., 2017, 10, 1306 (2017)
    L.L. Kazmerski, F.R. White, G.K. Morgan , "Thin‐film CuInSe2
    /CdS heterojunction solar cells"(1976)
    M.E. Beck, I.L. Repins, Tolerance of Three-Stage CIGS Deposition to Variations Imposed by Roll-to-Roll Processing, NREL/SR-520-36378 (2004)
    YuriGoushi, Fabrication of pentanary Cu(In,Ga)(SeS)2 absorbers by selenization and sulfurization, Solar Energy Materials and Solar Cells,Volume 93, Issue 8, Pages 1318-1320 ( 2009)
    R.Caballero ,The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates, Thin Solid Films,Volume 517, Issue 7, Pages 2187-2190 (2009)
    W.Thongkham, Enhancing efficiency of Cu(In, Ga)Se2 solar cells on flexible stainless steel foils using NaF co-evaporation, Solar Energy,Volume 92, Pages 189-195 (2013)
    Z. Gao et al., "Study on the performance of Tungsten–Titanium alloy film as a diffusion barrier for iron in a flexible CIGS solar cell," vol. 120, pp. 357-362, (2015).
    R.Caballero et al.The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates, Thin Solid Films ,Volume 517, Issue 7, 2 February 2009
    P. Salomé, J. Malaquias, P. Fernandes, and A. J. J. o. P. D. A. P. Da Cunha, "Mo bilayer for thin film photovoltaics revisited," vol. 43, no. 34, p.345501, (2010)
    R. Chang and B. J. A. S. L. Shih, "Effects of Molybdenum Electrode Layers on Performance of CIGS Thin Film Solar Cells," vol. 8, no. 1, pp.147152, (2012)
    D. Hariskos et al., "New reaction kinetics for a high‐rate chemical bath deposition of the Zn (S, O) buffer layer for Cu (In, Ga) Se2‐based solar cells," vol. 20, no. 5, pp. 534-542, (2012)
    M. Nakamura et al, "Achievement of 19.7% efficiency with a small sized Cu(InGa)(SeS) 2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer," in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 0849-0852: IEEE. (2013)
    D. K. Schroder, "Semiconductor Material and Device Characterization. Third Edition. (2006)
    L. J. v. d. Pauw, "A method of measuring specific resistivity and Hall effects of discs of arbitrary shape," Philips Research Reports,13,1-9, (1958)
    Michael Gostein , Lawrence Dunn, Light Soaking Effects on PV Modules: Overview and Literature Review, Prepared for NREL PV Module Reliability Workshop February 16-17, (2011)
    Jung Y. Huang, Low cost high-efficiency amorphous silicon solar cells with improved light-soaking stability, Solar Energy Materials and Solar Cells,Volume 98, March 2012, Pages 277-282
    Sebastian Dittmann, Current-Soaking and Dark Storage Effects of Polycrystalline Thin Film Solar Modules, 2014 IEEE 40th Photovoltaic Specialist Conference
    P. K. Paul ,Role of EV+0.98 eV trap in light soaking-induced short circuit current instability in CIGS solar cells, 2017 IEEE 44th Photovoltaic Specialist Conference
    Timothy J Silverman ,Performance stabilization of CdTe PV modules using bias and light, NREL/CP-5J00-61240, 2014 IEEE 40th Photovoltaic Specialist Conference
    J.A. del Cueto ,Comparison of injection of carriers through light soaking and forward bias in dark (In Stabilization of polycrystalline thin film photovoltaic ,modules),
    U. Rau, M. Schmitt, J. Parisi, Persistent photoconductivity in Cu(In, Ga)Se_2 heterojunctions and thin films prepared by sequential deposition (1998)
    Karolina Macielak, M. Igalson,Persistent Photoconductivity in Polycrystalline Cu(In,Ga)Se2 Thin Films: Experiment Versus Theoretical Predictions (2015)
    P. Zabierowskia , U. Raub, M. Igalsona, Classification of metastabilities in the electrical characteristics of ZnO/CdS/ Cu(In, Ga)Se_2 solar cells (2001)
    Lukas Schmidt-Mende* and Judith L. MacManus-Driscoll,ZnO – nanostructures, defects, and devices (2007)

    QR CODE