簡易檢索 / 詳目顯示

研究生: 李爵宇
Chueh-Yu Li
論文名稱: 利用區域資訊進行內涵式影像檢索的檢索歷程學習機制之研究
A Studty on Region-based Issues for Intrasession and Intersession Learning in Content-based Image Retrieval
指導教授: 許秋婷
Chiou-Ting Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2006
畢業學年度: 95
語文別: 英文
論文頁數: 71
中文關鍵詞: 區域方法相關回饋檢索歷程檢索目標使用者意涵隱含語意空間內涵式影像檢索
外文關鍵詞: region-based approaches, relevance, query session, target query, user conception, hidden semantic space, content-based image retrieval
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「區域方法」與「相關回饋」是「內涵式影像檢索」的重要議題。區域表示法不僅能包含影像
    內局部資訊, 更能表示區域之間的空間相鄰關係, 是以相較於一般以整張影像為基礎的方法, 區域方
    法提供了更佳的影像比對準則與檢索功能性。由於使用者提供的範例影像常無法完整表達搜尋的意
    圖, 相關回饋技術旨在藉由與使用者的互動, 令其標記目前檢索結果中各影像的重要性, 以更新檢索
    結果。目前相關回饋的方法主要可分為兩類, 第一種方法是檢索過程所學得的參數不會使用在其他
    檢索過程; 第二種方法則是利用過往檢索所學得的參數, 以利更快得到好的檢索結果。

    本研究主要探討如何在相關回饋中使用區域表示法技術。在單一檢索歷程中, 我們提出的方
    法主要根植於Bayesian 架構, 並包含了會隨時間變化的使用者模型。使用者模型主要包含「檢索
    目標」與「使用者意涵」兩種概念。「檢索目標」意指藉由分析回饋影像的共同特徵, 來描述使用者
    心目中的搜尋目的; 而「使用者意涵」則代表一組在相關回饋中學得的參數, 主要用於更新比對影像
    的度量。影像的比對是在區域表示法的架構下進行,藉由考慮影像區域之間的空間相鄰關係,以求得
    較好的影像間區域對應結果。此外, 我們亦使用了一種能將回饋影像區域分群的方法,此方法可使在
    數學上, 將「檢索目標」與「使用者意涵」的學習, 完全以區域表示法架構進行。

    我們亦討論如何利用過往檢索歷程所學得的參數進行更佳的學習。本研究所提出的檢索, 能
    在區域表示法架構下, 藉由過往檢索結果推得一「隱含語意空間」。我們主要的想法是, 一個區域就
    代表了一個隱含的語意概念, 故一次檢索事實上是包含了數個語意概念。我們藉由過往短期檢索的
    結果初始化隱含語意空間,並以此空間進行長期檢索,且不斷將新學得的語意概念加入此空間中。由
    於長期下來, 此空間容易包含不一致、重覆或擾亂的資訊, 故我們使用一種維度削減的技術, 在區域
    表示法架構下, 將「隱含語意空間」化簡至比較緊密的表示法。

    實驗結果顯示出, 透過使用者模型與區域表示法, 短期檢索能達到相當好的檢索效能。而長期
    檢索則能更進一步藉由「隱含語意空間」改進檢索結果。實驗也顯示出, 我們提出的維度削減技術,
    的確能消除冗餘的隱含語意概念。


    Region-based approaches and relevance feedback have been indispensable issues in
    content-based image retrieval (CBIR). Region-based representation combines both local
    information and their spatial organization so as to provide better image representation
    and matching criterion. Relevance feedback allows users to rate retrieved images and
    refine the retrieved results interactively. Current relevance feedback methods are mainly
    divided into intrasession and intersession learning, depending on whether or not the
    learned information from historical query sessions is accumulated to subsequent query
    sessions.

    This study addresses region-based issues for both intrasession and intersession
    learning. The proposed intrasession learning technique is a generalized Bayesian framework
    which incorporates a time-varying user model. The user model includes a target
    query to specify the user’s ideal query and a user conception to adjust the time-varying
    matching criterion. We include spatially adjacent relationship to estimate the region
    correspondence between images for better image matching criterion. In addition, we also
    propose to update the target query as well as the user conception in region level based
    on the estimated region correspondence.

    For intersession learning, we aim to infer the hidden semantic space in region level
    by accumulating the knowledge learned from previous query sessions. The main idea
    is that a region in the query possesses a hidden semantic concept, and hence a query
    session will generate several concepts in our work. We initialize the hidden semantic
    space based on a series of query sessions. With the constructed hidden semantic space,
    we then perform retrieval and keep accumulating newly learned concepts into the hidden
    semantic space. Since the hidden semantic space may contain inconsistency, overlapping
    or mislabeled concepts, we employ a dimension reduction technique in region level to
    construct a more compact space.

    Experiments demonstrate that the proposed intrasession learning method combined
    with time-varying user model and region-based representation achieves satisfactory results.
    The results also show that our intersession learning method based on the inferred
    hidden semantic space further improves the retrieval accuracy, and the proposed dimension
    reduction technique removes redundant hidden semantic concepts effectively.

    ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. PreviousWork andMotivation . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 ImageMatching in Region Level . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Intrasession Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 MindReader and Other Feature ReweightingMethods . . . . . . . 8 2.2.2 PicHunter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Region-Based Approaches for Intrasession Learning . . . . . . . . 12 2.3 Intersession Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Hidden Semantic Concept Learning . . . . . . . . . . . . . . . . . 13 2.3.2 Other Intersession Learning Approaches . . . . . . . . . . . . . . 15 2.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Motivation for Intrasession Learning . . . . . . . . . . . . . . . . 17 2.4.2 Motivation for Intersession Learning . . . . . . . . . . . . . . . . 19 3. Intrasession Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 Generalized Bayesian Learning Framework . . . . . . . . . . . . . . . . . 23 3.2 Graph-Theoretic ImageMatching . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Image DistanceMeasurement . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Estimation of Target Query and User Conception . . . . . . . . . . . . . 33 4. Intersession Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1 Initialization of the Hidden Semantic Space . . . . . . . . . . . . . . . . . 38 4.1.1 A Brief Introduction to Support Vector Machine . . . . . . . . . . 40 4.1.2 Indexing Database Regions by Hidden Semantic Concepts . . . . 44 4.2 Retrieval Based on Hidden Semantic Concepts . . . . . . . . . . . . . . . 45 4.3 Dimension Reduction of the Hidden Semantic Space . . . . . . . . . . . . 48 4.3.1 Cluster Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.2 Dimension Reduction Based on Cluster Ensembles . . . . . . . . . 51 5. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1 Database, Ground Truth and Test Queries . . . . . . . . . . . . . . . . . 53 5.2 Region Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 PerformanceMeasurement . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.5 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.6 Experimental Results And Discussions . . . . . . . . . . . . . . . . . . . 57 5.6.1 PicHunter vs. Our Approach in Image Level . . . . . . . . . . . . 58 5.6.2 IRMvs. Our Graph-Theoretic ImageMatching . . . . . . . . . . 58 5.6.3 Image Level vs. Region Level in Intrasession Learning . . . . . . . 60 5.6.4 Intrasession Learning vs. Intersession Learning . . . . . . . . . . . 61 6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    [1] J. Li, J. Z. Wang, and G. Wiederhold, “IRM: integrated region matching for image
    retrieval,” in ACM Multimedia, 2000.
    [2] H. Greenspan, G. Dvir, and Y. Rubner, “Region correspondence for image matching
    via EMD flow,” in Proc. IEEE Workshop on Content-Based Access of Image and
    Video Libraries, 2000.
    [3] X. He, O. King, W. Y. Ma, M. Li, and H. J. Zhang, “Learning a semantic space
    from user’s relevance feedback for image retrieval,” IEEE Transactions on Image
    Processing, vol. 13, no. 1, pp. 39–48, Jan. 2003.
    [4] I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas, and P. N. Yianilos,
    “The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical
    experiments,” IEEE Transactions on Image Processing, vol. 9, no. 1, pp.
    20–37, Jan. 2000.
    [5] Y. Ishikawa, R. Subramanya, and C. Faloutsos, “MindReader: querying databases
    through multiple examples,” in Proc. International Conference on Very Large Data
    Bases, 1998.
    [6] Y. Rui and T. S. Huang, “Optimizing learning in image retrieval,” in Proc. IEEE
    International Conference on Computer Vision and Pattern Recognition, 2000.
    [7] B. Ko and H. Byun, “Integrated region-based image retrieval using region’s spatial
    relationships,” in Proc. IEEE International Conference on Pattern Recognition,
    2002.
    [8] C. Y. Li and C. T. Hsu, “Soft region correspondence estimation for graph-theoretic
    image retrieval using quadratic programming approach,” in Proc. IEEE International
    Conference on Multimedia and Expo, 2005.
    [9] K. Kailing, H. P. Kriegel, and S. Schぴonauer, “Content-based image retrieval using
    multiple representations,” in Proc. International Conference on Knowledge-Based
    Intelligent Information and Engineering Systems, 2004.
    [10] B. Fischer, C. Thies, M. O. Gぴuld, and T. M. Lehmann, “Content-based image
    retrieval by matching hierarchical attributed region adjacency graphs,” in Proc.
    SPIE Medical Imaging, 2004.
    [11] R. Baeza-Yates and G. Valiente, “An image similarity measure based on graph
    matching,” in Proc. IEEE International Symposium on String Processing Information
    Retrieval, 2000.
    [12] I. J. Cox, M. L. Miller, T. P. Minka, and P. N. Yianilos, “An optimized interaction
    strategy for Bayesian relevance feedback,” in Proc. IEEE Computer Society
    Conference on Computer Vision and Pattern Recognition, 1998.
    [13] Y. Rui, T. S. Huang, and S. Mehrotra, “Content-based image retrieval with relevance
    feedback in MARS,” in Proc. IEEE International Conference on Image Processing,
    1997.
    [14] M. L. Kherfi, D. Ziou, and A. Bernardi, “Learning from negative example in relevance
    feedback for content-based image retrieval,” in Proc. IEEE International
    Conference on Pattern Recognition, 2002.
    [15] T. Wang, Y. Rui, and S. M. Hu, “Optimal adaptive learning for image retrieval,” in
    Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
    2001.
    [16] G. Aggarwal, Ashwin T.V., and S. Ghosal, “An image retrieval system with automatic
    query modification,” IEEE Transactions on Multimedia, vol. 4, no. 2, pp.
    201–214, June 2002.
    [17] S. C. C. C. Zhang and M. L. Shyu, “Multiple object retrieval for image databases using
    multiple instance learning and relevance feedback,” in Proc. IEEE International
    Conference on Multimedia and Expo, 2004.
    [18] F. Jing, M. Li, H.J. Zhang, and B. Zhang, “An efficient and effective region-based
    image retrieval framework,” IEEE Transactions on Image Processing, vol. 13, no. 5,
    pp. 699–709, May 2004.
    [19] R. Zhang and Z. Zhang, “Hidden semantic concept discovery in region based image
    retrieval,” 2004.
    [20] J. Han, K. N. Ngan, M. Li, and H. J. Zhang, “A memory learning framework for
    effective image retrieval,” IEEE Transactions on Image Processing, vol. 14, no. 4,
    pp. 511–524, Apr. 2005.
    [21] X. Zhou, Q. Zhang, L. Liu, L. Zhang, and B. Shi, “An image retrieval method based
    on analysis of feedback sequence log,” Pattern Recognition Letters, vol. 24, no. 14,
    pp. 2499–2508, Oct. 2003.
    [22] I. Bartolini, P. Ciaccia, and F. Waas, “Feedbackbypass: a new approach to interactive
    similarity query processing,” in Proc. International Conference on Very Large
    Data Bases, 2001.
    [23] J. Fournier and M. Cord, “Long-term similarity learning in content-based image
    retrieval,” in Proc. IEEE International Conference on Image Processing, 2002.
    [24] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press, 1985.
    [25] B. Luo and E. R. Hancock, “Structural graph matching using the em algorithm and
    singular value decomposition,” IEEE Transactions on Pattern Analysis and Machine
    Intelligence, vol. 23, no. 10, pp. 1120–1136, Oct. 2001.
    [26] N. Critstianini and J. Shawe-Taylor, An introduction to support vector machines and
    other kernel-based learning methods. Cambridge University Press, 2000.
    [27] J. C. Platt, “Probabilistic outputs for support vector machines and comparisons
    to regularized likelihood methods,” in Advances in Large Margin Classiers, A. J.
    Smola, P. Bartlett, B. Schoelkopf, D. Schuurmans, Ed., 2000.
    [28] A. Strehl and J. Ghosh, “Cluster ensembles – a knowledge reuse framework for
    combining multiple partitions,” Journal of Machine Learning Research, vol. 3, pp.
    583–667, Dec. 2002.
    [29] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning
    irregular graphs,” SIAM Journal on Scientific Computing, vol. 20, pp. 359–392,
    Aug. 1998.
    [30] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space
    analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23,
    no. 5, pp. 603–619, May 2002.
    [31] L. G. Shapiro and G. C. Stockman, Computer vision. Prentice Hall, 2001.
    [32] A. D. Bimbo, Visual information retrieval. Morgan Kaufmann, 1999.
    [33] V. H. M. Sonka and R. Boyle, Image processing, analysis, and machine vision,
    2nd ed. Brook/Cole, 1999.
    [34] R. C. Gonzalez and R. E. Woods, Digital image processing, 2nd ed. Prentice Hall,
    2002.
    [35] Z. Su, H. J. Zhang, S. Li, and S. Ma, “Relevance feedback in content-based image
    retrieval: Bayesian framework, feature subspaces, and progressive learning,” IEEE
    Transactions on Image Processing, vol. 12, no. 8, pp. 924–937, Aug. 2003.
    [36] J. W. Hsieh and W. E. L. Grimson, “Spatial template extraction for image retrieval
    by region matching,” IEEE Transactions on Image Processing, vol. 12, no. 11, pp.
    1404–1415, Nov. 2003.
    [37] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, “Support vector clustering,”
    Journal of Machine Learning Research, vol. 2, pp. 125–137, Dec. 2001.
    [38] J. S.-T. B. Scholkぴopf, J. C. Platt and A. J. Smola, “Estimating the support of a
    high-dimensional distribution,” Neural Computation, vol. 13, pp. 1443–1471, July
    2001.
    [39] A. Hanjalic and H. Zhang, “An integrated scheme for automated video abstraction
    based on unsupervised cluster-validity analysis,” vol. 9, no. 8, pp. 1280–1289, Dec.
    1999.
    [40] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: a generalized convergence
    theorem and characterization of local optimality,” IEEE Transactions on Pattern
    Analysis and Machine Intelligence, vol. 6, no. 1, pp. 81–87, Jan. 1984.
    [41] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantization design,”
    IEEE Transactions on Communications, vol. 28, no. 1, pp. 84–95, Jan. 1980.
    [42] J. W. Tung and C. T. Hsu, “Learning hidden semantic cues using support vector
    clustering,” in Proc. IEEE International Conference on Image Processing, 2005.
    [43] J. Yang, V. Estivill-Castro, and S. K. Chalup, “Support vector clustering through
    proximity graph modelling,” in Proc. IEEE Internaltional Conference on Neural
    Information Processing, 2002.
    [44] T. P. Minka and R. W. Picard, “Interactive learning with a “society of models”,” in
    Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
    1996.
    [45] A. Jaimes, A. B. Benitez, S. F. Chang, and A. C. Loui, “Discovering recurrent visual
    semantics in consumer photographs,” in Proc. IEEE International Conference on
    Image Processing, 2000.
    [46] B. Huet and E. R. Hancock, “Inexact graph retrieval,” in Proc. IEEE Workshop on
    Content-Based Access of Image and Video Libraries, 1999.
    [47] H. Y. Bang, C. Zhang, and T. Chen, “Semantic propagation from relevance feedbacks,”
    in Proc. IEEE International Conference on Multimedia and Expo, 2004.
    [48] T. M. Mitchell, Machine learning. McGraw Hill, 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE