簡易檢索 / 詳目顯示

研究生: 陳彥文
Chen, Yan Wen
論文名稱: 垂直共振腔面射雷射驅動器與低電壓差動訊號之實現與設計
The Design and Implementation of Vertical-Cavity Surface-Emitting Laser Diode Driver and Low-Voltage Differential Signaling
指導教授: 盧志文
Lu, Chih Wen
口試委員: 陳巍仁
Chen, Wei Zen
鄭國興
Cheng, Kuo Hsing
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 雷射二極體驅動碼際干擾低電壓差動訊號印刷電路板設計
外文關鍵詞: Laser diode driver, ISI effect, LVDS, High-Speed PCB
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文分成兩個部份,分別為雷射二極體驅動電路設計以及低電壓差動訊號電路設計與量測,在每個部份皆會詳細說明電路設計的流程並用直觀的方式說明所需瞭解之電路運作原理。
    雷射二極體驅動電路設計包含利用電路模擬軟體完成整體雷射二極體驅動電路之設計與佈局以及如何模擬光纖模組。由於光訊號在經過光纖時會因色散等效應而造成碼際干擾,會影響訊號讀出的正確性。而此雷射二極體驅動電路採用多水管的架構將碼際干擾消除,以確保電路在高頻操作時依然能讀出正確的訊號。並將設計時所需瞭解之電路運作原理在時域上表示,同時將雷射二極體驅動電路在佈局需特別注意高頻操作時的匹配和走線等詳細說明。
    低電壓差動訊號設計考量到單位時間內可以傳輸大量資料,並達到低抖動和共模特性、訊號完整性。此篇設計為改良磁滯接收器之輸出緩衝閘和設計量測時之高速印刷電路板,以達到量測時可接收到高速且正確的資料。
    此低電壓差動訊號晶片使用0.18微米製程,操作在1.8伏特時搭配設計的高速印刷電路板量測時可達到500Mbps的良好眼圖,並符合低電壓差動訊號傳輸介面的規格。此晶片含有4個通道,4個通道的差異在於輸出緩衝閘的不同,但量測時皆可達到500Mbps的眼圖,同時證實了此晶片的重現性與可靠度。


    This thesis includes two parts, namely the laser diode driver circuit design and low-voltage differential signal circuit design and measurement, both of them will be described in detail in each part of the design flow and illustrated the principle of operation by intuition.
    Laser diode driver circuit design includes the use of circuit simulation software and layout of the whole laser diode driver circuit. Also how to simulate the fiber modules. The light signals pass through the optical fiber because of chromatic dispersion and other effects caused by the ISI, which will affect the accuracy of the signal read out. This laser diode driver uses the taps architecture to cancel the ISI effect to ensure that the data can be read out correctly at high frequency. The principle of the circuits operation will be illustrated in the time domain. The laser diode drive circuit layout has few critical points need to know at high frequency operation, suck as matching and alignment, etc. Those key points illustrate in detail.
    LVDS circuit design considers the large amounts of data that can be transmitted per unit of time and achieves low jitter, common mode characteristic and signal integrity. This part design of modified hysteresis receiver and buffer, while the measurement can receive fast and correct data.
    This LVDS chip using 0.18 micron process and operating at 1.8 volts with the design of high-speed PCB can reach 500Mbps of eye diagram, and comply the specifications of LVDS. This chip contains four channels, which difference with the buffer, all of the channels can achieve 500Mbps eye diagram at measurement. It confirms the reproducibility and the reliability of this chip.

    中文摘要 I Abstract II 致謝 III 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2研究背景 2 1.3眼圖參數 6 1.3.1隨機抖動 (Random Jitter) 7 1.3.2精確抖動 (Deterministic Jitter) 7 1.3.3規律抖動 (Periodic Jitter) 8 1.4低電壓差動訊號傳輸參數 9 1.4.1反射 (Reflect) 9 1.4.2串音干擾 (Cross Talk) 11 1.4.3接地反彈 (Ground Bounce) 11 1.5垂直腔面發射雷射驅動器參數 13 1.5.1碼際干擾 (Inter-Symbol Interference) 13 第二章 低電壓差動訊號傳輸概論 15 2.1 低電壓差動訊號特性 15 2.1.1規格 15 2.1.2傳輸特性 16 2.2 低電壓差動訊號優勢 17 2.2.1速度 17 2.2.2抗雜訊能力 17 2.2.3功耗 18 2.2.4電磁干擾 18 第三章 雷射二極體驅動器概論 19 3.1光源 19 3.2光纖 21 3.2.1光纖與同軸電纜 21 3.2.2集膚效應(Skin Effect) 22 3.2.3單模光纖與多模光纖 23 3.3均衡器 (Equalizer) 25 3.3.1前饋式均衡器 (Feed-Forward Equalizer, FFE) 25 第四章 電路實現與設計 29 4.1高速低電壓差動訊號磁滯接收器 29 4.1.1高速低電壓差動訊號磁滯接收器佈局 31 4.2多通道高速低電壓差動訊號磁滯接收器 32 4.2.1多通道高速低電壓差動訊號磁滯接收器佈局 34 4.3垂直腔面發射雷射驅動器電路 35 4.3.1串入並出電路 (Serial-In, Parallel-Out, SIPO) 35 4.3.2前饋式均衡器 (Feed-Forward Equalizer, FFE) 36 4.3.3電流數位類比轉換器 (Current Digital-to-Analog Converter) 38 4.3.4驅動差動對 41 4.3.5單端轉雙端電路 43 4.3.6垂直腔面發射雷射驅動器電路佈局 43 第五章 模擬結果 45 5.1高速低電壓差動訊號磁滯接收器 45 5.1.1佈局前模擬 45 5.1.2佈局後模擬 47 5.1.3模擬結果整理與佈局前後比較 49 5.2多通道高速低電壓差動訊號磁滯接收器 50 5.2.1佈局前模擬 50 5.2.2佈局後模擬 54 5.2.3模擬結果整理與佈局前後比較 59 5.3 垂直腔面發射雷射驅動器電路 60 5.3.1佈局前模擬 60 5.3.2佈局後模擬 66 5.3.3模擬結果整理與佈局前後比較 68 第六章 量測環境與結果 70 6.1量測環境規劃 70 6.1.1量測環境 70 6.2高速低電壓差動訊號磁滯接收器量測結果 71 6.2.1量測環境與架設 71 6.2.2量測結果與文獻比較 75 6.3多通道高速低電壓差動訊號磁滯接收器量測結果 77 6.2.1量測環境與架設 77 6.2.2量測結果與文獻比較 91 第七章 結論與未來展望 93 7.1結論 93 7.2未來展望 94 參考文獻 96

    [1] "IEEE Standard for Low-Voltage Differential Signals (LVDS) for Scalable Coherent Interface (SCI)," in IEEE Std 1596.3-1996
    [2] "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits, "ANSI/TIA/EIA-644-1995, Telecommunications Industry Association, Nov.15, 1995.
    [3] Y. Unekawa, K. Seki-Fukuda, K. Sakaue, T. Nakao, S. Yoshioka, T. Nagamatsu, H. Nakakita, Y. Kaneko, M. Motoyama, Y. Ohba, K. Ise, M. Ono, K. Fujiwara, Y. Miyazawa, T. Kuroda, Y. Kamatani, T. Sakurai, A. Kanuma, "A 5 Gb/s 8/spl times/8 ATM switch element CMOS LSI supporting five quality-of-service classes with 200 MHz LVDS interface," Solid-State Circuits Conference, 1996. Digest of Technical Papers. 42nd ISSCC, 1996 IEEE International, San Francisco, CA, USA, 1996, pp. 118-119.
    [4] P. Xiao, D. Kuchta, K. Stawiasz, H. Ainspan, Joong-Ho Choi and Hyun Shin, "A 500 Mb/s, 20-channel CMOS laser diode array driver for a parallel optical bus," Solid-State Circuits Conference, 1997. Digest of Technical Papers. 43rd ISSCC., 1997 IEEE International, San Francisco, CA, USA, 1997, pp. 250-251.
    [5] A. Boni, A. Pierazzi and D. Vecchi, "LVDS I/O interface for Gb/s-per-pin operation in 0.35-μm CMOS," in IEEE Journal of Solid-State Circuits, vol. 36, no. 4, pp. 706-711, Apr 2001.
    [6] Y. Lin, W. Kang, X. Chen, J. Zhang, X. Zou, "A novel 1.2 Gbps LVDS receiver for multi-channel applications," Proceedings of the 2009 12th International Symposium on Integrated Circuits, Singapore, 2009, pp. 287-290.
    [7] G. Mandal and P. Mandal, "Low-power LVDS receiver for 1.3Gbps physical layer (PHY) interface," 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 2180-2183 Vol. 3.
    [8] M. d. Ker, C. h. Wu, "Design on LVDS receiver with new delay-selecting technique for UXGA flat panel display applications," 2006 IEEE International Symposium on Circuits and Systems, Island of Kos, 2006, pp. 5155-5158.
    [9] B. Young, "An SOI CMOS LVDS driver and receiver pair," VLSI Circuits, 2001. Digest of Technical Papers. 2001 Symposium on, Kyoto, Japan, 2001, pp. 153-154.
    [10] C. y. Chen, J. h. Wang and T. p. Sun, "A Novel Mini-LVDS Receiver in 0.35-um CMOS," 2006 IEEE International SOC Conference, Taipei, 2006, pp. 65-68.
    [11] S. Palermo and M. Horowitz, "High-Speed Transmitters in 90nm CMOS for High-Density Optical Interconnects," 2006 Proceedings of the 32nd European Solid-State Circuits Conference, Montreux, 2006, pp. 508-511.
    [12] K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, A. Larsson, "4-PAM for high-speed short-range optical communications," in IEEE/OSA Journal of Optical Communications and Networking, vol. 4, no. 11, pp. 885-894, Nov. 2012.
    [13] J. F. Bulzacchelli, M. Meghelli, S. V. Rylov, W. Rhee, A. V. Rylyakov, H. A. Ainspan, B. D. Parker, M. P. Beakes, A. Chung, T. J. Beukema, P. K. Pepeljugoski, L. Shan, Y. H. Kwark, S. Gowda, D. J. Friedman, "A 10-Gb/s 5-Tap DFE/4-Tap FFE Transceiver in 90-nm CMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2885-2900, Dec. 2006.
    [14] H. Li, Z. Xuan, A. Titriku, C. Li, K. Yu, B. Wang, A. Shafik, N. Qi, Y. Liu, R. Ding, B. J. Tom, M. Fiorentino, M. Hochberg, S. Palermo, P. Y. Chiang, "22.6 A 25Gb/s 4.4V-swing AC-coupled Si-photonic microring transmitter with 2-tap asymmetric FFE and dynamic thermal tuning in 65nm CMOS," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
    [15] R. A. Philpott, J. S. Humble, R. A. Kertis, K. E. Fritz, B. K. Gilbert and E. S. Daniel, "A 20Gb/s SerDes transmitter with adjustable source impedance and 4-tap feed-forward equalization in 65nm bulk CMOS," 2008 IEEE Custom Integrated Circuits Conference, San Jose, CA, 2008, pp. 623-626.
    [16] T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, M. Beakes, "A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization," in IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2633-2645, Dec. 2005.
    [17] R. Farjad-Rad, Chih-Kong Ken Yang, M. Horowitz and T. Lee, "A 0.3-/spl mu/m CMOS 8-Gb/s 4-PAM serial link transceiver," VLSI Circuits, 1999. Digest of Technical Papers. 1999 Symposium on, Kyoto, Japan, 1999, pp. 41-44.
    [18] J. Bulzacchelli, T. Beukema, D. Storaska, P. H. Hsieh, S. Rylov, D. Furrer, D. Gardellini, A. Prati, C. Menolfi, D. Hanson, J. Hertle, T. Morf, V. Sharma, R. Kelkar, H. Ainspan, W. Kelly, G. Ritter, J. Garlett, R. Callan, T. Toifl, D. Friedman, "A 28Gb/s 4-tap FFE/15-tap DFE serial link transceiver in 32nm SOI CMOS technology," 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2012, pp. 324-326.
    [19] P. C. Chiang, J. Y. Jiang, H. W. Hung, C. Y. Wu, G. S. Chen and J. Lee, "4×25 Gb/s Transceiver With Optical Front-end for 100 GbE System in 65 nm CMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 573-585, Feb. 2015.
    [20] Common Electrical I/O (CEI) - Electrical and Jitter Interoperability agreements for 6G+ bps, 11G+ bps and 25G+ bps I/O, Optical Internetworking Forum, Sep. 2011 [Online]. Available: http://www.oiforum.com/public/documents/OIF_CEI_03.0.pdf
    [21] J. Y. Jiang, P. C. Chiang, H. W. Hung, C. L. Lin, T. Yoon and J. Lee, "100Gb/s ethernet chipsets in 65nm CMOS technology," 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 120-121.
    [22] A. Maxim, "Notice of Violation of IEEE Publication Principles
    A 3.3 V 12.5 Gb/s 0.2 m SiGe BiCMOS Laser Diode Driver Using Bias Current Modulation Cancellation," in IEEE Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2086-2098, Oct. 2007.
    [23] N. Chujo, T. Takai, T. Sugawara, Y. Matsuoka, D. Kawamura, K. Adachi, T. Kawamata, T. Ohno, K. Ohhata, "A 25 Gb/s 65-nm CMOS Low-Power Laser Diode Driver With Mutually Coupled Peaking Inductors for Optical Interconnects," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 9, pp. 2061-2068, Sept. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE