研究生: |
薩亞吉 Padhy, Satyajit |
---|---|
論文名稱: |
在虛擬資料中心處理時變工作量的資源管理方法 Resource Orchestration Techniques for Time Varied Workload in Virtualized Datacenters |
指導教授: |
周志遠
Chou, Jerry |
口試委員: |
賴冠州
Lai, Kuan-Chou 蕭宏章 Hsiao, Hung-Chang 李哲榮 Lee, Che-Rung 韓永楷 Hon, Wing-Kai |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 127 |
中文關鍵詞: | 分佈式計算 、調度算法 、優化問題 、資源管理 、算法設計 、網絡功能虛擬化 |
外文關鍵詞: | Distributed Computing, Scheduling Algorithm, Optimization Problem, Resource Management, Algorithm Design, Network Function Virtualization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代虛擬化數據中心通常依靠虛擬機(VM)遷移將工作負載整合到一台機器上以節省能源。但是虛擬機遷移有很多缺點,包括性能下降、服務中斷等。因此,當遷移發生時,使用整合感知調度方法來最小化開銷是微不足道的。如果工作負載隨時間變化,即隨時間變化的工作負載,則手頭的問題變得更具挑戰性。隨著工作負載需求的變化,需要一個編排器來相應地管理資源。在本論文中,我為虛擬化數據中心中隨時間變化的工作負載提出了各種資源編排技術。我已經在兩種不同類型的系統上實現了這種方法:(i) 批處理系統和 (ii) 網絡功能虛擬化 (NFV)。 我將論文分為三部分進行研究:(i)CAMIRA是一種可感知合併的調度算法,可主動避免VM遷移;(ii)MIRAGE是一種使用遺傳算法將VM遷移減至最少的VM放置策略 (iii)REAP 是一種重新配置感知編排技術,適用於虛擬化數據中心中具有時變工作負載的網絡功能虛擬化。在CAMIRA中,我們的結果表明,利用VM整合決策的先驗知識,我們的調度算法將遷移數量顯著減少了37%-46%,從而提高了系統性能,同時減少了網絡帶寬消耗並縮短了作業執行時間。在 MIRAGE 中,我們展示了同樣的問題可以表述為整數線性規劃(ILP)問題,並且可以通過遺傳算法找到接近最優的解決方案。 在 REAP 中,我們研究了各種重新配置策略,通過在 NFV 佈局問題中設計模型來製定其成本,ILP 和啟發式解決方案。在我們的評估中,我們觀察到能源和重新配置成本降低了 60% 和 25%,我們分析了每種重新配置方法的成本降低,以驗證我們啟發式算法的設計。
Modern virtualized data centers often rely on reconfiguration solutions like migrations and scaling to address huge workload demands or consolidate workload for energy saving. But reconfiguration solutions has many drawbacks, for instance VM migrations can cause performance degradation, service disruption etc. Hence, it is trivial to use reconfiguration-aware scheduling approach to minimize the overhead when migrations occur. The problem in hand becomes more challenging if the workload varies across time, i.e. time-varied workload. As the workload demand changes, an orchestrator is required to manage resources accordingly. In this thesis I have proposed various resource orchestration techniques for time-varied workload in virtualized datacenters. My methodologies are focused on two different types of systems: (i) batch system and (ii) Network Function Virtualization (NFV). And I have divided my thesis into three different works: (i) \textbf{CAMIRA} is a consolidation aware scheduling algorithm that proactively avoids VM migrations, (ii) \textbf{MIRAGE} is a VM placement strategy that uses a genetic algorithm to minimize VM migrations and (iii)\textbf{REAP} is a reconfiguration aware orchestration technique for NFV with time-varied workload in virtualized datacenters. In CAMIRA our results show that by taking advantage of the prior knowledge of VM consolidation decision, our scheduling algorithm significantly reduces the number of migrations by 37\% - 46\% which leads to improved system performance with less network bandwidth consumption and shorter job execution time. In MIRAGE we show the same problem can be formulated as an integer linear programming~(ILP) problem, and an near-optimal solution can be found by using a genetic algorithm. In REAP we investigate various reconfiguration strategies for different problem domain in NFV, formulate their costs by designing a model in the NFV placement problem, and propose ILP and heuristic solutions. In our evaluation, we observed 60\% and 25\% cost reduction for energy and reconfiguration costs, and we analyze the cost reduction from each of the reconfiguration methods to validate the design of our heuristic algorithm.
[1] S. Akoush, R. Sohan, A. Rice, A.W. Moore, and A. Hopper. Predicting the performance of virtual machine migration. In IEEE International Symposium on Modeling, Analysis Simulation of Computer and Telecommunication Systems, pages 37–46, 2010.
[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 164–177, New York, NY, USA, 2003. ACM.
[3] M.F.Bari, S.R.Chowdhury, R.Ahmed, andR.Boutaba. Onorchestrating virtual network functions. In 2015 11th International Conference on Network and Service Management (CNSM), pages 50–56, Nov 2015.
[4] M.F.Bari, S.R.Chowdhury, R.Ahmed, andR.Boutaba. Onorchestrating virtual network functions. In 2015 11th International Conference on Network and Service Management (CNSM), pages 50–56, 2015.
[5] L. A. Barroso and U. Hölzle. The case forenergy-proportionalcomputing. Computer, 40(12):33–37, Dec 2007.
[6] Mark Beierl. List of open source vnfs. https://wiki.opnfv.org/ display/functest/List+Of+VNFs, October 2017.
[7] Anton Beloglazov and Rajkumar Buyya. Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-Science, MGC ’10, pages 4:1–4:6, New York, NY, USA, 2010. ACM.
[8] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic characteristics of datacenters in the wild. In Proceedings of the10th ACM SIGCOMM Conference on Internet Measurementˊ , IMC'10, page 267 280, New York, NY, USA, 2010.
[9] Dinabandhu Bhandari, C. A. Murthy, and Sankar K. Pal. Genetic algorithm with elitist model and its convergence. International Journal of Pattern Recognition and Artificial Intelligence, 10(06):731–747, 1996.
[10] J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer. Energy efficient virtual network embedding. IEEE Communications Letters, 16(5):756–759, 2012.
[11] Rajkumar Buyya, Anton Beloglazov, and Jemal H. Abawajy. Energyefficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges. CoRR, abs/1006.0308, 2010.
[12] F. Carpio, A. Jukan, and R. Pries. Balancing the migration of virtual network functions with replications in data centers. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, pages 1–8, 2018.
[13] José Castillo-Lema, Augusto Venâncio Neto, Flávio de Oliveira, and Sergio Takeo Kofuji. Mininet-nfv: Evolving mininet with oasis tosca nvf profiles towards reproducible nfv prototyping. In 2019 IEEE Conference on Network Softwarization (NetSoft), pages 506–512, 2019.
[14] Imran Ali Chaudhry and ISAM ELBADAWI. Minimisation of total tardiness for identical parallel machine scheduling using genetic algorithm. Sādhanā, pages 1–11, 07 2016.
[15] GongChen, WenboHe, JieLiu, SumanNath, LeonidasRigas, LinXiao, and Feng Zhao. Energy-aware server provisioning and load dispatchingforconnection-intensiveinternetservices. In ACM/USENIX NSDI, pages 337–350, 2008.
[16] Ming Chen, Hui Zhang, Ya-Yunn Su, Xiaorui Wang, Guofei Jiang, and Kenji Yoshihira. Effective vm sizing in virtualized datacenters. In12th
IFIP/IEEEInternational Symposium on Integrated NetworkManagement (IM 2011) and Workshops, pages 594–601, 2011.
[17] Ming Chen, Hui Zhang, Ya-Yunn Su, Xiaorui Wang, Guofei Jiang, and KenjiYoshihira. EffectiveVMsizinginvirtualizeddatacenters. InProceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management, pages 594–601, May 2011.
[18] Hyung Won Choi, Hukeun Kwak, Andrew Sohn, and Kyusik Chung. Autonomous learning for efficient resource utilization of dynamic vm migration. In Proceedings of the 22Nd Annual International Conference on Supercomputing, ICS’08, pages185–194, NewYork, NY,USA,2008. ACM.
[19] S. Choudhury, D.R. Gaur, and R. Krishnamurti. An approximation algorithm for max k-uncut with capacity constraints. In Computational Sciences and Optimization, 2009. CSO 2009. International Joint Conference on, volume 2, pages 934–938, April 2009.
[20] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation, pages 273–286, 2005.
[21] Dr. Chunfeng Cui. Etsi. network functions virtualisation ˊintroduction white paper. MYYUXUTWYFQJYXNTWL3+;3+;D<MNYJD 5FUJWUIK, October 2012.
[22] V. De Maio, G. Kecskemeti, and R. Prodan. A workload-aware energy model for virtual machine migration. In 2015 IEEE International Conference on Cluster Computing, pages 274–283, Sep. 2015.
[23] U. Deshpande and K. Keahey. Traffic-sensitive live migration of virtual machines. In 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pages 51–60, May 2015.
[24] J. Duan, C. Wu, F. Le, A. X. Liu, and Y. Peng. Dynamic scaling of virtualized, distributed service chains: A case study of ims. IEEE Journal on Selected Areas in Communications, 35(11):2501–2511, Nov 2017.
[25] J. Elias, F. Martignon, S. Paris, and J. Wang. Efficient orchestration mechanisms for congestion mitigation in nfv: Modelsandalgorithms. IEEE Transactions on Services Computing, 10(4):534–546, July 2017.
[26] V. Eramo, M. Ammar, and F. G. Lavacca. Migration energy aware reconfigurations of virtual network function instances in nfv architectures. IEEE Access, 5:4927–4938, 2017.
[27] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres, and H. Tenhunen. Using ant colony system to consolidate vms for green cloud computing. IEEE Transactions on Services Computing, 8(2):187–198, 2015.
[28] Fahimeh Farahnakian, Adnan Ashraf, Pasi Liljeberg, Tapio Pahikkala, Juha Plosila, Ivan Porres, and Hannu Tenhunen. Energy-aware dynamic vm consolidation in cloud data centers using ant colony system. In Proceedings of the 2014 IEEE International Conference on Cloud Computing, CLOUD ’14, pages 104–111, Washington, DC, USA, 2014. IEEE Computer Society.
[29] Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation of the minimum bisection. SIAM J. Comput., 31(4):1090–1118, April 2002.
[30] Md Hasanul Ferdaus, Manzur Murshed, Rodrigo N. Calheiros, and Rajkumar Buyya. Virtual machine consolidation in cloud data centers using ACO metaheuristic. In Euro-Par 2014 Parallel Processing: 20th International Conference, Proceedings, pages 306–317, August 2014.
[31] Tiago Ferreto, César A. F. De Rose, and Hans-Ulrich Heiss. Maximum migration time guarantees in dynamic server consolidation for virtualized data centers. In Proceedings of the 17th International Conference on Parallel Processing - Volume Part I, Euro-Par’11, pages 443–454, Berlin, Heidelberg, 2011. Springer-Verlag.
[32] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach. Virtual network embedding: A survey. IEEE Communications Surveys Tutorials, 15(4):1888–1906, 2013.
[33] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, and Charles Lefurgy. Optimal power allocation in server farms. In Proceedings of the Eleventh International Joint Conference on Measurement and Modeling of Computer Systems, pages 157–168, 01 2009.
[34] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, and Charles Lefurgy. Optimal power allocation in server farms. In Proceedings of the Eleventh International Joint Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’09, pages 157–168, New York, NY, USA, 2009. ACM.
[35] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and R. Boutaba. Elastic virtual network function placement. In 2015 IEEE
4th International Conference on Cloud Networking (CloudNet), pages 255–260, Oct 2015.
[36] J. Gil Herrera and J. F. Botero. Resource allocation in nfv: A comprehensive survey. IEEE Transactions on Network and Service Management, 13(3):518–532, Sep. 2016.
[37] I. Goiri, F. Julia, R. Nou, J. L. Berral, J. Guitart, and J. Torres. Energyaware scheduling in virtualized datacenters. In 2010 IEEE International Conference on Cluster Computing, pages 58–67, Sept 2010.
[38] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren, George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference engine: Harnessing memory redundancy in virtual machines. Commun. ACM, 53(10):85–93, October 2010.
[39] Amir Hamidinia, Sahand Khakabimamaghani, Mohammad Mahdavi Mazdeh, and Mostafa Jafari. A genetic algorithm for minimizing total tardiness/earliness of weighted jobs in a batched delivery system. Computers and Industrial Engineering, 62(1):29 – 38, 2012.
[40] Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in a graph. In Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms, SODA ’92, pages 165–174. Society for Industrial and Applied Mathematics, 1992.
[41] M. Harvan, T. Locher, and A. C. Sima. Cyclone: Unified stream and batch processing. In 2016 45th International Conference on Parallel Processing Workshops (ICPPW), pages 220–229, 2016.
[42] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia Lawall. Entropy: A consolidation manager for clusters. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE ’09, pages 41–50, New York, NY, USA, 2009. ACM.
[43] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy live migration of virtual machines. SIGOPS Oper. Syst. Rev., 43(3):14– 26, July 2009.
[44] Mohammad Hossain, Jen-Cheng Huang, and Hsien-Hsin S. Lee. Migration energy-aware workload consolidation in enterprise clouds. In CloudCom, pages 405–410, 2012.
[45] O. Houidi, O. Soualah, W. Louati, M. Mechtri, D. Zeghlache, and F. Kamoun. An efficient algorithm for virtual network function scaling. In GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pages 1–7, 2017.
[46] Q. Huang, F. Gao, R. Wang, and Z. Qi. Power consumption of virtual machine live migration in clouds. In 2011 Third International Conference on Communications and Mobile Computing, pages 122–125, April 2011.
[47] IBM. The potsdam institute for climate impact research (pik) ibm dataplex cluster log, 2012.
[48] IBM. The university of luxemburg gaia cluster log, provided by joseph emeras, 2012.
[49] IBM. Ibm cplex optimizer.https://www.ibm.com/analytics/ cplex-optimizer, February 2020.
[50] M. Jammal, H. Hawilo, A. Kanso, and A. Shami. Mitigating the risk of cloud services downtime using live migration and high availabilityawareplacement. In 2016 IEEE International Conferenceon Cloud Computing Technology and Science (CloudCom), pages 578–583, Dec 2016.
[51] Deepal Jayasinghe, Calton Pu, Tamar Eilam, Malgorzata Steinder, and Ian Whalley. Improving performance and availability of services hosted on iaas clouds with structural constraint-aware virtual machine placement. In in IEEE SCC, 2011.
[52] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. Live virtual machine migration with adaptive, memory compression. In Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE International Conference on, pages 1–10, Aug 2009.
[53] Gueyoung Jung, Kaustubh R. Joshi, Matti A. Hiltunen, Richard D. Schlichting, and Calton Pu. A cost-sensitive adaptation engine for server consolidation of multitier applications. In Proceedings of the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware ’09, pages 9:1–9:20, New York, NY, USA, 2009. SpringerVerlag New York, Inc.
[54] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko, and A. Tantawi. Dynamic placement for clustered web applications. In Proceedings of the 15th International Conference on World Wide Web, WWW ’06, pages 595–604, New York, NY, USA, 2006. ACM.
[55] O. Khalid, I. Maljevic, R. Anthony, M. Petridis, K. Parrott, and M. Schulz. Deadline aware virtual machine scheduler for grid and cloud computing. In 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops, pages 85– 90, April 2010.
[56] S. Kim, Y. Han, and S. Park. An energy-aware service function chaining and reconfiguration algorithm in nfv. In 2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W), pages 54–59, Sep. 2016.
[57] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. Kvm: the linux virtual machine monitor. In In Proceedings of the 2007 Ottawa Linux Symposium (OLS-07, 2007.
[58] A. Kochut and K. Beaty. On strategies for dynamic resource management in virtualized server environments. In 2007 15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, pages 193–200, Oct 2007.
[59] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and Guofei Jiang. Power and performance management of virtualized computing environments via lookahead control. In Proceedings of the 2008 International Conference on Autonomic Computing, ICAC ’08, pages 3–12, Washington, DC, USA, 2008. IEEE Computer Society.
[60] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and Guofei Jiang. Power and performance management of virtualized computing environments via lookahead control. In IEEE International Conference on Autonomic Computing, pages 3–12, 2008.
[61] Cheol-Hoon Lee, Dongmyun Lee, and Myunghwan Kim. Optimal task assignment in linear array networks. IEEE Trans. Comput., 41(7):877– 880, July 1992.
[62] Cheol-Hoon Lee and Kang G. Shin. Optimal task assignment in homogeneous networks. IEEE Trans. Parallel Distrib. Syst., 8(2):119–129, February 1997.
[63] Aris Leivadeas, George Kesidis, Mohamed Ibnkahla, and Ioannis Lambadaris. Vnf placement optimization at the edge and cloud. Future Internet, 11(3):69, Mar 2019.
[64] J. Li and Tomo Munehisa. Genetic algorithm using the inhomogeneous markov chain for job shop scheduling problem. ICIC Express Letters, 9:501–509, 01 2015.
[65] Xiaoping Li, Tianze Jiang, and Rubén Ruiz. Heuristics for periodical batch job scheduling in a mapreduce computing framework. Information Sciences, 326:119 – 133, 2016.
[66] Min Yeol Lim, Freeman Rawson, Tyler Bletsch, and Vincent W. Freeh. PADD: Power Aware Domain Distribution. In International Conference on Distributed Computing Systems, pages 239–247, 2009.
[67] Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Netw., 21(5):1378–1391, October 2013.
[68] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live migration of virtual machine based on full system trace and replay. In Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, HPDC ’09, pages 101–110, New York, NY, USA, 2009. ACM.
[69] Haikun Liu, Hai Jin, Cheng-Zhong Xu, and Xiaofei Liao. Performance and energy modeling for live migration of virtual machines. Cluster Computing, 16(2):249–264, Jun 2013.
[70] Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, and Xiaofei Liao. Performance and energy modeling for live migration of virtual machines. In IEEE International Conference on High-Performance Parallel and Distributed Computing, pages 171–182, 2011.
[71] Uri Lublin and Dror G. Feitelson. The workload on parallel supercomputers: modeling the characteristics of rigid jobs. Journal of Parallel and Distributed Computing, 63(11):1105–1122, November 2003.
[72] Piyush Mehrotra, Jahed Djomehri, Steve Heistand, Robert Hood, Haoqiang Jin, Arthur Lazanoff, Subhash Saini, and Rupak Biswas. Performance evaluation of amazon ec2 for nasa hpc applications. In Proceedings of the 3rd Workshop on Scientific Cloud Computing Date, ScienceCloud ’12, pages 41–50, New York, NY, USA, 2012. ACM.
[73] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the scalability of data center networks with traffic-aware virtual machine placement. In Proceedings of the 29th Conference on Information Communications, INFOCOM’10, pages 1154–1162, Piscataway, NJ, USA, 2010. IEEE Press.
[74] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck, and Raouf Boutaba. Network function virtualization: State-of-the-art and research challenges. IEEE Communications Surveys Tutorials, 18(1):236–262, 2016.
[75] Gustavo Miotto, Marcelo Caggiani Luizelli, Weverton Luis da Costa Cordeiro, and Luciano Paschoal Gaspary. Adaptive placement & chaining of virtual network functions with nfv-pear. Journal of Internet Services and Applications, 10(1):3, Feb 2019.
[76] Isi Mitrani. Trading power consumption against performance by reserving blocks of servers. In Mirco Tribastone and Stephen Gilmore, editors, Computer Performance Engineering, pages 1–15, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
[77] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration for virtual machines. In Proceedings of the 2005 USENIX Annual Technical Conference, pages 391–394. ACM, 01 2005.
[78] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration for virtual machines. In USENIX Annual Technical Conference, pages 391–394, 2005.
[79] Akihiko Nishimura, David B Dunson, and Jianfeng Lu. Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods. Biometrika, 107(2):365–380, 03 2020.
[80] K. A. Noghani, A. Kassler, and J. Taheri. On the cost-optimality tradeoff for service function chain reconfiguration. In 2019 IEEE 8th International Conference on Cloud Networking (CloudNet), pages 1–6, 2019.
[81] H. Ouerfelli and A. Dammak. The genetic algorithm with two point crossover to solve the resource-constrained project scheduling problems. In20135thInternationalConferenceonModeling, Simulationand Applied Optimization (ICMSAO), pages 1–4, April 2013.
[82] J. Pei, P. Hong, K. Xue, and D. Li. Efficiently embedding service function chains with dynamic virtual network function placement in geo distributed cloud system. IEEE Transactions on Parallel and Distributed Systems, 30(10):2179–2192, Oct 2019.
[83] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts. A deep reinforcement learning approach for vnf forwarding graph embedding. IEEE Transactions on Network and Service Management, pages 1–1, 2019.
[84] The Rachel, Selim Benin School of Computer Science, and Engineering. The llnl atlas log.
[85] Ali Asghar Rahmani Hosseinabadi, Javad Vahidi, Behzad Saemi, Arun Kumar, and Mohamed Elhoseny. Extended genetic algorithm for solving open-shop scheduling problem. Soft Computing, pages 1–18, 04 2018.
[86] W. Rankothge, F. Le, A. Russo, and J. Lobo. Optimizing resource allocation for virtualized network functions in a cloud center using genetic algorithms. IEEE Transactions on Network and Service Management, 14(2):343–356, 2017.
[87] Federico Reali, Corrado Priami, and Luca Marchetti. Optimization algorithms for computational systems biology. Frontiers in Applied Mathematics and Statistics, 3:6, 2017.
[88] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A. Kozuch. Towards understanding heterogeneous clouds at scale: Google trace analysis. Technical report, Intel science and technology center for cloud computing, Carnegie Mellon University, April 2012.
[89] Swapnoneel Roy, Atri Rudra, and Akshat Verma. An energy complexity model for algorithms. In Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS ’13, pages 283–304, New York, NY, USA, 2013. ACM.
[90] G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 5(1):96–101, 1994.
[91] Lidia Ruiz, Ramón J. Durán, Ignacio De Miguel, Pouria S. Khodashenas, Jose-Juan Pedreño-Manresa, Noemí Merayo, Juan C. Aguado, Pablo Pavón-Marino, Shuaib Siddiqui, Javier Mata, Patricia Fernández, Rubén M. Lorenzo, and Evaristo J. Abril. A genetic algorithm for vnf provisioning in nfv-enabled cloud/mec ran architectures. Applied Sciences, 8(12), 2018.
[92] M. Savi, M. Tornatore, and G. Verticale. Impact of processing costs on service chain placement in network functions virtualization. In 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN), pages 191–197, 2015.
[93] Arman Shehabi, Sarah Smith, Dale Sartor, Richard Brown, Magnus
Herrlin, Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and William Lintner. United states data center energy usage report. Technical report, Lawrence Berkeley National Laboratory, Berkeley, California, Jun 2016.
[94] W.Song, Z.Xiao, Q.Chen and H.Luo. Adaptive resource provisioning for the cloud using online bin packing. IEEE Transactions on Computers, 63(11):2647–2660, Nov 2014.
[95] Z.Song, X.Zhang, and C.Eriksson. Data center energy and cost saving evaluation. Energy Procedia, 75:1255–1260, 2015. Clean, Efficient andAffordableEnergyforaSustainableFuture: The7thInternational Conference on Applied Energy (ICAE2015).
[96] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache. A green vnf-fg embedding algorithm. In 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pages 141–149, June 2018.
[97] A. Strunk and W. Dargie. Does live migration of virtual machines cost energy? In Advanced Information Networking and Applications
(AINA), 2013 IEEE 27th International Conference on, pages 514–521, March 2013.
[98] Kohei Tabota and Takuji Tachibana. Greedy-based vnf placement algorithm for dynamic multipath service chaining. IEICE Transactions on Communications, advpub, 2018.
[99] I.Takouna, W.Dawoud, and C.Meinel. Analysis and simulation of hpc applications in virtualized data centers. In 2012 IEEE International Conference on Green Computing and Communications, pages 498–507, Nov 2012.
[100] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao. Migration modeling and learning algorithms for containers in fog computing. IEEE Transactions on Services Computing, 12(5):712–725, 2019.
[101] M. Tarighi, Seyed A. Motamedi, and Saeed Sharifian. A new model for virtual machine migration in virtualized cluster server based on fuzzy decision making. CoRR, 2010.
[102] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joydeep Sen Sarma, Raghotham Murthy, and Hao Liu. Data warehousing and analytics infrastructure at facebook. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD'10, page 1013ˊ1020, New York, NY, USA, 2010. Association for Computing Machinery.
[103] Adel Nadjaran Toosi, Rodrigo N. Calheiros, Ruppa K. Thulasiram, and Rajkumar Buyya. Resource provisioning policies to increase iaas provider’s profit in a federated cloud environment. In IEEE International Conference on High Performance Computing and Communications, pages 279–287, 2011.
[104]Ngoc Minh Tranand Lex Wolters. Towards a profound analysis of bags of tasks in parallel systems and their performance impact. In IEEE International Conference on High-Performance Parallel and Distributed Computing, pages 111–122, 2011.
[105] Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog, Cees de Laat, Joe Mambretti, Inder Monga, Bas van Oudenaarde, Satish Raghunath, and Phil Yonghui Wang. Seamless live migration of virtual machines over the man/wan. Future Gener. Comput. Syst., 22(8):901–907, October 2006.
[106] M. H. Tsai, J. Chou, and J. Chen. Prevent vm migration in virtualized clusters via deadline driven placement policy. In 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, volume 1, pages 599–606, Dec 2013.
[107] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and A. Delis. Flexible use of cloud resources through profit maximization and price discrimination. In 2011 IEEE 27th International Conference on Data Engineering, pages 75–86, April 2011.
[108] Nikos Tziritas, Samee Ullah Khan, Cheng-Zhong Xu, Thanasis Loukopoulos, and Spyros Lalis. On minimizing the resource consumption of cloud applications using process migrations. J. Parallel Distrib. Comput., 73(12):1690–1704, December 2013.
[109] Nikos Tziritas, Cheng-Zhong Xu, Thanasis Loukopoulos, Samee Ullah Khan, and Zhibin Yu. Application-aware workload consolidation to minimize both energy consumption and network load in cloud environments. In Proceedings of the 2013 42Nd International Conference on Parallel Processing, ICPP ’13, pages 449–457, 2013.
[110] Gladys Utrera, Siham Tabik, Julita Corbalan, and Jesús Labarta. A job scheduling approach for multi-core clusters based on virtual malleability. In Euro-Par, pages 191–203, 2012.
[111] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: power and migration cost aware application placement in virtualized systems. In Proceedings of the USENIX International Conference on Middleware, pages 243–264, 2008.
[112] Akshat Verma, Juhi Bagrodia, and Vimmi Jaiswal. Virtual machine consolidation in the wild. In Proceedings of the 15th International Middleware Conference, Middleware ’14, page 313ˊ324, New York, NY, USA, 2014. Association for Computing Machinery.
[113] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak,Pradipta De,and Ravi Kothari. Server workload analysis for power minimization using consolidation. In USENIX Annual Technical Conference, pages 28–28, 2009.
[114] Akshat Verma, Gautam Kumar, and Ricardo Koller. The cost of reconfiguration in a cloud. In Proceedings of the 11th International Middleware Conference Industrial Track, Middleware Industrial Track ’10, pages 11–16, New York, NY, USA, 2010. ACM.
[115] Vmware. vmware inc.
[116] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar Buyya. Cost of virtual machine live migration in clouds: A performance evaluation. In International Conference on Cloud Computing, pages 254–265, 2009.
[117] Omar Abdel Wahab, Nadjia Kara, Claes Edstrom, and Yves Lemieux. Maple: A machine learning approach for efficient placement and adjustment of virtual network functions. Journal of Network and Computer Applications, 142:37 – 50, 2019.
[118] Yuzhao Wang, Qixiao Liu, JunQing Yu, and Zhibin Yu. An experimental comparison between genetic algorithm and particle swarm optimization in spark performance tuning. In Proceedings of the First Workshop on Emerging Technologies for Software-Defined and Reconfigurable Hardware-Accelerated Cloud Datacenters, ETCD'17, New York, NY, USA, 2017. Association for Computing Machinery.
[119] Joseph Nathanael Witanto, Hyotaek Lim, and Mohammed Atiquzzaman. Adaptive selection of dynamic vm consolidation algorithm usingneuralnetworkforcloudresourcemanagement. FutureGeneration Computer Systems, 87:35 – 42, 2018.
[120] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. Sandpiper: Black-box and gray-box resource management for virtual machines. Computer Networks, 53:2923–2938, 12 2009.
[121] Q. Wu, F. Ishikawa, Q. Zhu, and Y. Xia. Energy and migration cost aware dynamic virtual machine consolidation in heterogeneous cloud datacenters. IEEE Transactions on Services Computing, 12(4):550–563, 2019.
[122] Y. Wu and M. Zhao. Performance modeling of virtual machine live migration. In 2011 IEEE 4th International Conference on Cloud Computing, pages 492–499, July 2011.
[123] J. Xia, Z. Cai, and M. Xu. Optimized virtual network functions migration for nfv. In 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), pages 340–346, Dec 2016.
[124] Heyang Xu, Yang Liu, Wei Wei, and Ying Xue. Migration cost and energy-aware virtual machine consolidation under cloud environments considering remaining runtime. Int. J. Parallel Program., 47(3):481ˊ501, June 2019.
[125] Yinyu Ye and Jiawei Zhang. Approximation of dense-n/2-subgraph and the complement of min-bisection. J. of Global Optimization, 25(1):55–73, January 2003.
[126] B.Yi, X.Wang, andM.Huang. Optimised approach for vnf embedding in nfv. IET Communications, 12(20):2630–2638, 2018.
[127] Yichao Jin, Yonggang Wen, and Qinghua Chen. Energy efficiency and server virtualization in data centers: An empirical investigation. In 2012 Proceedings IEEE INFOCOM Workshops, pages 133–138, 2012.
[128] Zelda B. Zabinsky. Random Search Algorithms. American Cancer Society, 2011.
[129] Qi Zhang, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu, Raouf Boutaba, and Joseph L. Hellerstein. Dynamic energy-aware capacity provisioning for cloud computing environments. In ICAC’12-Proceedings of the 9th ACM International Conference on Autonomic Computing, pages 145–154, 2012.
[130] M. F. Zhani, Q. Zhang, G. Simona, and R. Boutaba. Vdc planner: Dynamic migration-aware virtual data center embedding for clouds. In 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), pages 18–25, May 2013.
[131] Ming Zhao and Renato J. Figueiredo. Experimental study of virtual machine migration in support of reservation of cluster resources. In Proceedings of the 2Nd International Workshop on Virtualization Technology in Distributed Computing, VTDC ’07, pages 5:1–5:8, New York, NY, USA, 2007. ACM.
[132] Wenxing Zhu and Jiarui Chen. The complement of hypergraph capacitated min-k-cut problem. In Parallel Architectures, Algorithms and Programming (PAAP), 2010 Third International Symposium on, pages 395–397, Dec 2010
[133] ZIB. Survivable fixed telecommunication network design. http:// sndlib.zib.de/home.action, December 2005.
[134] N. Đerić, A. Varasteh, A. Basta, A. Blenk, R. Pries, M. Jarschel, and W. Kellerer. Coupling vnf orchestration and sdn virtual network reconfiguration. In 2019 International Conference on Networked Systems (NetSys), pages 1–3, March 2019.