簡易檢索 / 詳目顯示

研究生: 王聖淳
Wang, Sheng-Chun
論文名稱: 新穎鹼金屬鈦亞磷酸鹽之合成、結構與性質研究
Synthesis, Structure and Characterization of Novel Alkali Titanium Phosphites
指導教授: 王素蘭
Wang, Sue-Lein
口試委員: 李光華
Lii, Kwang-Hwa
林嘉和
LIN, CHIA-HER
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 225
中文關鍵詞: 亞磷酸鹼金屬
外文關鍵詞: titanium, phosphite, alkali-ion
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用中溫中壓水熱合成法開發出五個新穎鹼金屬鈦亞磷酸鹽,包含兩個鋰鈦亞磷酸鹽(L系列)與三個鈉鈦亞磷酸鹽(N系列),化學式皆可用Ax[Ti(HPO3)2] (A = Li、Na, 0.4 ≦ x ≦ 1)表示,其所含的鹼金屬離子個數不同,進而影響結構及鈦三四混價比例,此為文獻中首次以鹼金屬為陽離子的低價數鈦亞磷酸鹽的合成與結構之探討。所有化合物以單晶X光繞射儀收集繞射數據進行結構解析,測量粉末X光繞射儀圖譜比對確認樣品純度後,再進行其他性質量測,研究成果分為兩個系列進行討論。
    L系列介紹兩個含鋰離子混價鈦亞磷酸鹽:Lix[Ti(HPO3)2]·H2O (x ≅ 0.8) (L1)和Lix[Ti(HPO3)2] (x ≅ 0.4) (L2)。L1為二維結構,由鈦氧八面體以共角方式連接六個亞磷酸四面體形成kgd層,層間具有鋰離子與結晶水,利用固態鋰核磁共振光譜確認結構中有兩種不同結晶學位置的鋰,單晶數據所定化學式中的鋰含量也與感應偶合電漿質譜分析的數值相符。L1中的結晶水在加熱後可全部脫去,得到無水相L1’,經單晶解析確定空間群改變、層間距縮小、鋰離子在層間的位置也重排。L2是一個具有八員環孔隧的三維結構,其骨架與文獻中的LiM(HPO3)2 (M = V or Fe) 為等結構,鋰離子座落於八員環孔壁上的六員環中。將L1與L1’進行鋰離子電池(lithium ion battery)電極測試,結果顯示L1在第一圈充放電循環(galvaonostatic discharge/charge test)有20 mAh/g的電容量,但結構隨即瓦解;L1’則有較高的可逆電容量與結構穩定性,經過三次充放電循環仍具有36 mAh/g的電容量。
    N系列包含三個鈉鈦亞磷酸鹽,化學式分別為Na[Ti(HPO3)2] (N1)、Na0.67[Ti(HPO3)2] (N2)與Nax[Ti(HPO3)2] (x ≅ 0.4) (N3),三個化合物均是由鈦氧八面體與亞磷酸四面體以共角方式連接形成三維結構,N1為具有新穎結構的化合物,其熱穩定性可達500 ℃。N2、N3與文獻中的四價鈦亞磷酸鹽(Ti(HPO3)2)為等結構化合物,發現當反應溶液中鈉的莫爾濃度減少(由2.81至2.74 M),結構中鈉比例也隨之減少,由於鈉離子座落位置及比例不同,導致鈦混價(Ti4+/Ti3+)的程度不同以及結構對稱性的差異。
    目前文獻中僅有兩例單一價數且為中性骨架的鈦亞磷酸鹽,尚未有含陽離子的鈦亞磷酸鹽被報導,本論文發現需加入濃度至少2.3 M的鹼金屬起始物,可以合成得到不同結構、不同鈦混價比例且罕見的鹼金屬鈦亞磷酸鹽,並開發L1與L1’化合物作為鋰電池電極材料的應用性。 


    This thesis utilized the hydrothermal method to synthesize a series of novel alkali titanium phosphites. The general formula of these compopounds is Ax[Ti(HPO3)2] (A = Li、Na, 0.4 ≦ x ≦ 1), including two lithium titanium phosphites(L series) and three sodium titanium phosphites(N series). All crystal structures were determined by single-crystal X-ray diffraction (SXRD) method and the purity was examined by powder X-ray diffraction analysis, and their chemical and physical properties were also investigated.

    Lix[Ti(HPO3)2]·H2O (x ≅ 0.8) (L1) is a layered structure, which comprises kgd type titanium phosphite sheets stacked along the c-axis with the Li+ ions and water molecules located in the interlayer space. There are two crystallographic Li sites, which were corroborated by solid-state 7Li NMR spectrum. The contents of Li, Ti and P in L1 were determined by ICP-MS. Dehydration of L1 leads to its topotactic transformation to L1’. Based on SXRD analysis, L1’ showed different space group, d-spacing, and interlayer Li+ ion arrangement compared to L1. Lix[Ti(HPO3)2] (x ≅ 0.4) (L2) is a 3-D structure with 8-membered ring (8R) channels and the Li+ ions locate in the 6R window belonged to the channel. Both L1 and L1’ were tested as a cathode material for lithium-ion batteries. The galvanostatic charge-discharge cycling tests showed that L1’ has a reversible capacity of 36 mAh/g at 0.1 C rate in the third cycle whereas L1 decomposed after the first cycle.

    In the N series, all of three sodium titanium phosphites, Na[Ti(HPO3)2] (N1)、Na0.67[Ti(HPO3)2] (N2) and Nax[Ti(HPO3)2] (x ≅ 0.4) (N3), are 3-D structure and composed of TiO6 octahedra interconnected by HPO3 tetrahedra via sharing corners. N1 exhibits high thermal stability up to 500 ℃. N2 and N3 are isostructural with a known tetravalent titanium phosphite, Ti(HPO3)2. By varying the concentration of sodium starting reagent (2.81 to 2.74 M), the ratio and location of Na ions could be manipulated, resulting in the different structural symmetry and Ti3+/Ti4+ ratio of N2 and N3.

    There are only two titanium phosphite compounds in the literature to date. In this thesis, a series of novel alkali titanium phosphites have been synthesized by adding a high concentration of alkali ion in the reaction solution. Not only the rare topotactic transformation in L1 was found, but also the electrochemical studies of L1’ revealed its potential for lithium-ion battery. 

    第一章 緒論 1-1 簡介 1 1-1-1 孔洞材料簡介 1 1-1-2 二次鋰離子電池簡介 8 1-2 論文研究目標與成果摘要 12 1-3 合成方法 15 1-3-1 水熱合成法 15 1-3-2 藥品一覽表 19 1-4 鑑定方法 20 1-4-1 單晶X-ray繞射與結構分析(SXRD) 22 1-4-2 粉末X-ray繞射分析(PXRD) 25 1-4-3 熱重分析儀(TGA) 26 1-4-4 元素分析(ICP-MS) 26 1-4-5 紫外-可見光吸收光譜儀(UV-Vis) 26 1-4-6 固態核磁共振光譜儀(solid-state NMR) 27 1-4-7 超導量子干涉儀(SQUID) 27 1-4-8 電子順磁共振儀(EPR) 28 1-4-9 高解析電子能譜儀(HRXPS) 29 1-4-10 X光近緣吸收結構光譜(XANES) 29 1-4-11 鈕扣型電池封裝技術 30 1-4-12 鈕扣型電池充放電測試 34 1-5 參考文獻 35   第二章 具鋰離子之混價鈦亞磷酸鹽合成、結構、性質鑑定與鋰離子電池材料應用 2-1 背景簡介 37 2-2 實驗合成方法 44 2-3 化合物之鑑定與分析 47 2-3-1 單晶X光繞射(SXRD)結構解析 47 2-3-2 元素分析(ICP-MS) 50 2-3-3 粉末X光繞射分析(PXRD) 51 2-3-4 熱穩定性分析(TGA & in-situ PXRD) 52 2-3-5 高解析X光光電子光譜(XPS) 59 2-3-6 固態核磁共振光譜(7Li solid-state NMR) 65 2-3-7 電子順磁共振光譜(Solid State EPR) 68 2-3-8 磁性分析(SQUID) 70 2-3-9 紫外-可見光吸收光譜(UV-Vis) 76 2-4 結果與討論 78 2-4-1 化學式鑑定討論 78 2-4-2 結構描述 79 2-4-3 脫水引導之拓樸結構轉變現象(Dehydration-induced topotactic transformation) 87 2-4-4 合成討論 93 2-4-5 鈕扣型鋰離子電池組裝測試 96 2-5 結論 102 2-6 參考文獻 104   第三章 具鈉離子之鈦亞磷酸鹽合成、結構與性質鑑定 3-1 簡介 107 3-2 實驗合成方法 112 3-3 化合物的鑑定及分析 115 3-3-1 單晶X光繞射(SXRD)與結構解析 115 3-3-2 元素分析(ICP-MS) 118 3-3-3 粉末X光繞射分析(PXRD) 119 3-3-4 熱穩定性分析 119 3-4 結果與討論 123 3-4-1 結構描述 123 3-4-2 結構比較 131 3-4-3 合成討論 134 3-4-4 二價鈦存在討論 137 3-5 結論 147 3-6 參考文獻 149 第四章 總結與未來展望 4-1 總結與未來展望 149 附錄 晶體數據列表 153  

    1 aJ. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398, 227; bJ. M. Thomas, Angew. Chem. Int. Ed. 1999, 38, 3588-3628; cR. D. Miller, Science 1999, 286, 421-423; dD. Britt, H. Furukawa, B. Wang, T. G. Glover, O. M. Yaghi, Proceedings of the National Academy of Sciences 2009, 106, 20637-20640; eY. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei, C. Burda, J. Am. Chem. Soc. 2008, 130, 10643-10647; fA. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998-17999; gG. Qi, J. Xu, J. Su, J. Chen, X. Wang, F. Deng, J. Am. Chem. Soc. 2013, 135, 6762-6765; hM. Sadakiyo, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2011, 133, 11050-11053; iY. Takashima, V. M. Martínez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Nature Communications 2011, 2, 168; jD. Umeyama, S. Horike, M. Inukai, T. Itakura, S. Kitagawa, J. Am. Chem. Soc. 2012, 134, 12780-12785.
    2 A. F. Cronstedt, Rön och beskrifning om en obekant bärg art, som kallas Zeolites, 1756.
    3 S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146-1147.
    4 M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowdert, Nature 1988, 331, 698.
    5 aM. Estermann, L. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 1991, 352, 320; bP. B. Moore, J. Shen, Nature 1983, 306, 356; c賴宇倫, 清華大學化學系學位論文 2008, 1-361.
    6 aY.-C. Chang, S.-L. Wang, J. Am. Chem. Soc. 2012, 134, 9848-9851; bH. L. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2015, 54, 965-968; cS. H. Huang, C. H. Lin, W. C. Wu, S. L. Wang, Angew. Chem. Int. Ed. 2009, 48, 6124-6127; dS. H. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 5319-5322; eP. C. Jhang, N. T. Chuang, S. L. Wang, Angew. Chem. 2010, 122, 4296-4300; fP. C. Jhang, Y. C. Yang, Y. C. Lai, W. R. Liu, S. L. Wang, Angew. Chem. Int. Ed. 2009, 48, 742-745; gY.-L. Lai, K.-H. Lii, S.-L. Wang, J. Am. Chem. Soc. 2007, 129, 5350-5351; hY.-C. Liao, Y.-C. Jiang, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 12794-12795; iY.-C. Liao, F.-L. Liao, W.-K. Chang, S.-L. Wang, J. Am. Chem. Soc. 2004, 126, 1320-1321; jY.-C. Liao, C.-H. Lin, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 9986-9987; kC.-H. Lin, S.-L. Wang, K.-H. Lii, J. Am. Chem. Soc. 2001, 123, 4649-4650; lH.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu, Science 2013, 1232097; mM.-J. Sie, C.-H. Lin, S.-L. Wang, J. Am. Chem. Soc. 2016, 138, 6719-6722; nY.-C. Yang, S.-L. Wang, J. Am. Chem. Soc. 2008, 130, 1146-1147.
    7 M. S. Whittingham, Science 1976, 192, 1126-1127.
    8 R. “Battery, . Update”, Adv. Batt. Technol 1989, 10, 4. .
    9 G. Kirchhoff, R. Bunsen, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1861, 22, 329-349.
    10 K. Ozawa, Solid State Ionics 1994, 69, 212-221.
    11 T. Ohzuku, A. Ueda, M. Nagayama, Journal of the Electrochemical Society 1993, 140, 1862-1870.
    12 G. Amatucci, J. M. Tarascon, Journal of the Electrochemical Society 2002, 149, K31-K46.
    13 Z. R. Xu, L. B. Gao, Y. J. Liu, L. Li, Journal of the Electrochemical Society 2016, 163, A2600-A2610.
    14 N. Nitta, F. Wu, J. T. Lee, G. Yushin, Materials today 2015, 18, 252-264.
    15 B. Scrosati, Journal of The Electrochemical Society 1992, 139, 2776-2781.
    16 V. H. Nguyen, Y. H. Kim, 2018, 29.
    17 王素蘭, 科儀新知 2005, 48-54.
    18 B. Apex, Madison, WI 2008.
    19 G. Sheldrick, Bruker-Axs: Madison, WI 1998.
    20 I. Brown, D. Altermatt, Acta Crystallographica Section B 1985, 41, 244-247.

    1 李激揚; 吳俊標; 劉航, Vol. CN103395800A, 2013.
    2 A. Lallaoui, Z. Edfouf, O. Benabdallah, S. Idrissi, M. Abd-Lefdil, F. Cherkaoui El Moursli, International Journal of Hydrogen Energy 2018.
    3 (a) Ekambaram, S.; Sevov, S. C., Angew. Chem. Int. Ed. 1999, 38, 372-375; (b) Serre, C.; Guillou, N.; Ferey, G., J. Mater. Chem. 1999, 9, 1185-1189; (c) Ekambaram, S.; Serre, C.; Férey, G.; Sevov, S. C., Chem. Mater. 2000, 12, 444-449; (d) Chippindale, A. M.; Grimshaw, M. R.; Powell, A. V.; Cowley, A. R., Inorg. Chem. 2005, 44, 4121-4123; (e) Zhao, Y.; Yang, Y.; Yang, X.; Guo, W., Chem. Lett. 2007, 36, 456-457; (f) Zhao, Y.; Yu, J.; Kwon, Y.-U., Bull. Korean Chem. Soc. 2008, 29, 805-810; (g) Serre, C.; Haouas, M.; Taulelle, F.; Van Beek, W.; Férey, G., Comptes Rendus Chimie 2010, 13, 336-342.
    4 (a) Kinomura, N.; Muto, F.; Koizumi, M., J. Solid State Chem. 1982, 45, 252-258; (b) Leclaire, A.; Benmoussa, A.; Borel, M.; Grandin, A.; Raveau, B., J. Solid State Chem. 1988, 77, 299-305; (c) Benmoussa, A.; Borel, M.; Grandin, A.; Leclaire, A.; Raveau, B., J. Solid State Chem. 1990, 84, 299-307; (d) Harrison, W. T.; Gier, T.; Stucky, G., Acta Crystallographica Section C 1994, 50, 1643-1646; (e) Lin, C.-H.; Wang, S.-L., Inorg. Chem. 2005, 44, 251-257; (f) N. Recham, J. N. Chotard, J. C. Jumas, L. Laffont, M. Armand, J. M. Tarascon, Chemistry of Materials 2010, 22, 1142-1148.
    5 N. Nitta, F. Wu, J. T. Lee, G. Yushin, Materials today 2015, 18, 252-264.
    6 J.-M. Tarascon, M. Armand, Nature 2001, 414, 359.
    7 B. L. Ellis, K. T. Lee, L. F. Nazar, Chemistry of materials 2010, 22, 691-714.
    8 aA. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Journal of the electrochemical society 1997, 144, 1188-1194; bP. Barpanda, M. Ati, B. C. Melot, G. Rousse, J.-N. Chotard, M.-L. Doublet, M. T. Sougrati, S. Corr, J.-C. Jumas, J.-M. Tarascon, Nature materials 2011, 10, 772.
    9 E. Pinna, A. Martinez, F. Tunez, D. Drajlin, M. Rodriguez, Revista Mexicana de Ingeniería Química 2019, 18, 441-449.
    10 Y. Fan, T. Song, G. Li, Z. Shi, G. Yu, J. Xu, S. Feng, Inorganic Chemistry Communications 2005, 8, 661-664.
    11 H. Y. Asl, K. Ghosh, M. P. Vidal Meza, A. Choudhury, Journal of Materials Chemistry A 2015, 3, 7488-7497.
    12 Y. Orikasa, T. Masese, Y. Koyama, T. Mori, M. Hattori, K. Yamamoto, T. Okado, Z.-D. Huang, T. Minato, C. Tassel, Scientific reports 2014, 4, 5622.
    13 C. Ramana, A. Ait-Salah, S. Utsunomiya, A. Mauger, F. Gendron, C. Julien, Chemistry of Materials 2007, 19, 5319-5324.
    14 S.-H. Bo, K.-W. Nam, O. J. Borkiewicz, Y.-Y. Hu, X.-Q. Yang, P. J. Chupas, K. W. Chapman, L. Wu, L. Zhang, F. Wang, Inorganic chemistry 2014, 53, 6585-6595.
    15 G. Rousse, J. Tarascon, Chemistry of Materials 2013, 26, 394-406.
    16 Y. Makimura, L. Cahill, Y. Iriyama, G. Goward, L. Nazar, Chemistry of Materials 2008, 20, 4240-4248.
    17 R. Gover, P. Burns, A. Bryan, M. Saidi, J. Swoyer, J. Barker, Solid State Ionics 2006, 177, 2635-2638.
    18 V. H. Nguyen, D.-H. Lee, S.-Y. Baek, H.-B. Gu, Y. H. Kim, Ceramics International 2018, 44, 12504-12510.
    19 A. Lallaoui, Z. Edfouf, O. Benabdallah, S. Idrissi, M. Abd-Lefdil, F. C. El Moursli, in 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), IEEE, 2019, pp. 1-4.
    20 U. C. Chung, J. L. Mesa, J. L. Pizarro, I. de Meatza, M. Bengoechea, J. Rodríguez Fernández, M. I. Arriortua, T. Rojo, Chemistry of Materials 2011, 23, 4317-4330.
    21 H. Yaghoobnejad Asl, A. Choudhury, Inorganic chemistry 2015, 54, 6566-6572.
    22 H. L. Huang, S. H. Huang, C. W. Lai, J. R. Wu, K. H. Lii, S. L. Wang, Journal of the Chinese Chemical Society 2013, 60, 691-694.
    23 A. S. Hameed, M. Reddy, N. Sarkar, B. Chowdari, J. J. Vittal, RSC Advances 2015, 5, 60630-60637.
    24 M. Subramanian, R. Subramanian, A. Clearfield, Solid State Ionics 1986, 18, 562-569.
    25 M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257, 2717-2730.
    26 T. B. Coplen, Y. Shrestha, Pure and Applied Chemistry 2016, 88, 1203-1224.
    27 S. Auguste, V. Alonzo, T. Bataille, L. Le Polles, W. Canon-Mancisidor, D. Venegas-Yazigi, E. Le Fur, Journal of Solid State Chemistry 2014, 211, 212-218.
    28 F. Rosciano, P. P. Pescarmona, K. Houthoofd, A. Persoons, P. Bottke, M. Wilkening, Physical Chemistry Chemical Physics 2013, 15, 6107-6112.
    29 Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, J. Phys. Chem. C 2012, 116, 20848-20853.
    30 A. M. M., B. C. E., J. Am. Ceram. Soc. 1991, 74, 2299-2300.
    31 L. R. Grabstanowicz, S. Gao, T. Li, R. M. Rickard, T. Rajh, D.-J. Liu, T. Xu, Inorganic chemistry 2013, 52, 3884-3890.
    32 M. Serra, H. G. Baldovi, F. Albarracin, H. Garcia, Applied Catalysis B-Environmental 2016, 183, 159-167.
    33 T. G. Mitina, V. A. Blatov, Crystal Growth & Design 2013, 13, 1655-1664.
    34 F. Hamchaoui, V. Alonzo, T. Roisnel, H. Rebbah, Acta Crystallographica Section C: Crystal Structure Communications 2009, 65, i33-i35.
    35 F. Hamchaoui, V. Alonzo, H. Rebbah, E. Le Fur, Acta Crystallographica Section C: Structural Chemistry 2014, 70, 351-354.
    36 F. Hamchaoui, V. Alonzo, D. Venegas-Yazigi, H. Rebbah, E. Le Fur, Journal of Solid State Chemistry 2013, 198, 295-302.
    37 G. Giester, Monatshefte für Chemie/Chemical Monthly 1994, 125, 535-538.
    38 A. S. Hameed, M. Nagarathinam, M. Reddy, B. Chowdari, J. J. Vittal, Journal of Materials Chemistry 2012, 22, 7206-7213.
    39 T. Ohzuku, A. Ueda, Journal of The Electrochemical Society 1994, 141, 2972-2977.
    40 P. Verma, P. Maire, P. Novák, Electrochimica Acta 2010, 55, 6332-6341.

    1 李激揚; 吳俊標; 劉航, Vol. CN103395800A, 2013.
    2 A. Lallaoui, Z. Edfouf, O. Benabdallah, S. Idrissi, M. Abd-Lefdil, F. Cherkaoui El Moursli, International Journal of Hydrogen Energy 2018.
    3 F. Sato, S. Okamoto, Advanced Synthesis & Catalysis 2001, 343, 759-784.
    4 L. Jongen, T. Gloger, J. Beekhuizen, G. Meyer, Zeitschrift für anorganische und allgemeine Chemie 2005, 631, 582-586.
    5 H. Yamane, K. Hiraka, Acta Crystallogr E Crystallogr Commun 2018, 74, 1366-1368.
    6 J. A. Jensen, S. R. Wilson, A. J. Schultz, G. S. Girolami, Journal of the American Chemical Society 1987, 109, 8094-8096.
    7 H. Terauchi, J. B. Cohen, T. B. Reed, Acta Crystallographica Section A 1978, 34, 556-561.
    8 M. D. Banus, T. B. Reed, A. J. Strauss, Physical Review B 1972, 5, 2775-2784.
    9 E. Hilti, Naturwissenschaften 1968, 55, 130-131.
    10 S. Möhr, H. Müller-Buschbaum, Zeitschrift für anorganische und allgemeine Chemie 1994, 620, 1175-1178.
    11 S. Amano, D. Bogdanovski, H. Yamane, M. Terauchi, R. Dronskowski, Angewandte Chemie International Edition 2016, 55, 1652-1657.
    12 J. L. Murray, H. A. Wriedt, Journal of Phase Equilibria 1987, 8, 148-165.
    13 U. S. G. Survey, Mineral Commodity Summaries 2019, 98-99.
    14 V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González, T. Rojo, Energy & Environmental Science 2012, 5, 5884.
    15 L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao, Z. Guo, Energy & Environmental Science 2018, 11, 2310-2340.
    16 J. Y. Hwang, S. T. Myung, Y. K. Sun, Chemical Society Reviews 2017, 46, 3529-3614.
    17 I. Munao, E. A. Zvereva, O. S. Volkova, A. N. Vasiliev, A. R. Armstrong, P. Lightfoot, Inorganic chemistry 2016, 55, 2558-2564.
    18 W. Liu, H.-H. Chen, X.-X. Yang, J.-T. Zhao, European Journal of Inorganic Chemistry 2005, 2005, 946-951.
    19 J. Orive, R. Fernández de Luis, J. R. Fernández, L. Lezama, M. I. Arriortua, Dalton Transactions 2016, 45, 12188-12199.
    20 Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, J. Phys. Chem. C 2012, 116, 20848-20853.
    21 A. M. M., B. C. E., J. Am. Ceram. Soc. 1991, 74, 2299-2300.
    22 M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257, 2717-2730.

    無法下載圖示 全文公開日期 2024/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE