研究生: |
江家豪 Juang, Jia-Hao |
---|---|
論文名稱: |
石墨烯補強共聚物高分子不連續碳纖維複合材料之機械性質與破壞行為研究 Investigation on Mechanical Properties and Fracture Behavior by Nanoscale Graphene Discontinuous Carbon Fiber Reinforced Copolymer (Epoxy/Benzoxazine) Composite |
指導教授: |
葉銘泉
Yip, Ming-Chuen |
口試委員: |
方維倫
Fang, Wei-leun 葉維磬 Yeh,Wei-Ching |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 石墨烯 、Benzoxazine 、改質環氧樹脂 、短碳纖維 、多尺度混摻 、機械性質 、疲勞性質 、不連續纖維複合材料 |
外文關鍵詞: | Graphene, Benzoxazine, Modified epoxy, Short carbon fiber, Multi-scale mixture, Mechanical properties, Fatigue behaviour, Discontinuous fiber reinforced composite |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要主旨著重在氧代氮代苯并環已烷(Benzoxaine)與改質環氧樹脂混摻作為高分子基材主體。之後於高分子基材中添加石墨烯(Graphene)與短碳纖維(Short carbon fiber)之補強材,目的主要是為了探討其奈米尺度跟微米尺度補強材之補強效果,並強化多尺度混摻後之介面特性、以提高機械與疲勞性質。實驗中主要探討下量因素對材料之影響: (1)Benzoxaine對環氧樹脂的添加量、(2)奈米等級石墨烯與微米等級短碳纖維織之添加量、(3)多尺度混摻之複合材料的添加量
高分子複材研究指出添加20wt%Benzoxaine可顯著提高環氧樹脂基材之機械強度:拉伸強度提升21.37%、彎曲強度提升33.45%、彎曲模數提升13.86%,吸濕阻水率提升38.03%,但Benzoxaine屬於硬脆型材料,導致衝擊性質下降了55%。
當20wt%Benzoxaine/環氧樹脂複合材料添加奈米等級石墨烯則指出,0.5wt%GNPs添加量拉伸強度提升14.18%、吸濕阻水率提升22.83%;0.25wt%GNPs添加量彎曲強度提升了2.46%、彎曲模數上升8.05%。另外一方面,添加了微米等級短碳纖維則指出8wt%添加量有最好的機械性質:彎曲強度上升了22.93%,吸濕阻水率上升了9.84%.。
最後研究顯示GNPs-0.5wt%/SF-8wt%/Benzoxazine/環氧樹脂複合材料有最好的提升:拉伸提升22.62%、彎曲強度提升12.2%、衝擊強度提升39.07%、扭轉疲勞壽命提升了3.2到3.8倍,但因短碳纖維在加載過程會在纖維末端產生大量微裂紋,從而降低其延展性,彎曲模數反而下降33.84%。
This study is focuses on the characteristics of the benzoxazine/epoxy copolymer matrix, combined thegraphene and micro-scale short carbon fibers to be reinforcement. In order to investigate the reinforced mechanism of the nano-scale and micro-scale additive, the interfacial properties, mechanical behavior, and fatigue failure would be realized on the mulit-scale reinforced composite. The researches includes: (1) Different contents of benzoxazine resin in Epoxy resin, (2) graphene and Micro-scale short carbon fibers concentration, (3) the interaction of multi-scale reinforcement material concentration
This research aims to discuss the effect of the mixture of nano-scale graphene and micro-scale short carbon fiber, notably intensifies the the mixture of multi-scale interface, improving and increasing both mechanical properties and dynamic fatigue life. The investigation includes:(1)Different Benzoxazine resin concentration in Epoxy,(2)Nano-scale graphene and Micro-scale short carbon fibers concentration.(3)Multi-scale reinforcement material concentration.
In the matrix experiment, the results indicate that the value of mechanical strength increases with the content of benzoxazine increased. From the results, the 20wt% benzoxazine/epoxy significantly improves the mechanical strength up to 21.37% improvement in tensile strength; 33.45% improvement in flexural strength; 13.86% improvement in flexural modulus; 38.03% improvement in resistance of water absorption.
However, because of the property benzoxazine is more brittle than epoxy, the impact strength of benzoxazine/epoxy copolymer reduces about 55%.
The research shows that addition of graphene in the optimum content of 20wt% benzoxazine/epoxy composite 14.18% improvement in tensile strength, 22.83% improvement in the resistance of water absorption by adding the 0.5wt% graphene; 2.46% improvement in flexural strength, and 8.05% improvement in flexural modulus by adding the 0.25wt% graphene.
It is showed that adding 8wt% micro-scale short carbon fiber has the best enhancement to the mechanical properties: increasing 22.93% in flexural strength and 9.84% in the resistance of water absorption.
Finally, the optimum content of GNPs-0.5wt%/SF-8wt%/ Benzoxazine/ Epoxy composites preform the best enhancement to the properties about 22.62% improvement in tensile strength, 12.2% improvement in flexural strength, and 39.07% improvement in impact strength, 3.2-3.8 times improvement in torsion fatigue life. Because of the reason of short carbon fiber will produce a lot of micro-cracks in the fiber-end, the stress concentration would influence the ductility and lead to cracks propagation. In the result, the flexural tests reveal about 33.84% downtrend in flexural modulus.
[1] 梁麗娜,國立清華大學化學工程系論文, 馬振基教授指導,2007.
[2] 陳帄、王德中編著,「環氧樹脂及其應用」,化學工業出版社,北京,2004.
[3] May, C. A., 1998, "Epoxy resins: chemistry and technology: CRC".
[4] 王春山,「環氧樹脂簡介與最近的發展(一)~(四) 」,化工技術,第二卷,第十期,第54頁,1994;第二卷,第十一期,第120頁1994.
[5] 馬振基、趙珏著,「高分子複合材料下冊、製程、檢測與應用」,華香園出版社,台北,2005.
[6] 王國書, 2007, “奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究,” 國立清華大學動力機械工程學系碩士論文.
[7] Holly, F. W. and Cope, A. C., 1944, "Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine," Journal of the American Chemical Society, 66(11), pp. 1875-1879.
[8] 游俊盟, 2005, ”馬來醯胺-氧代氮代苯并環已烷之合成、聚合及硬化樹脂研究,” 中原大學化學工程學系碩士論文.
[9] Agag, T. and Takeichi, T., 2001, “Novel benzoxazine monomers containing p-phenylpropargyl ether: Polymerization of monomers and properties of polybenzoxazines”, Macromolecules, Vol. 34, pp. 7257-7263.
[10] Brunovska, Z., Lyon, R. and Ishida, H., 1999, “Thermal properties of phthalonitrile functional polybenzoxazines”, Journal of Thermochim Acta, Vol357-358, pp.195-203.
[11] Ishida, H. J. and Allen, D. J., 1996 “Physical and mechanical characterization of near-zero shrinkage polybenzoxazines”, Polym. Sci B: Polym. Phys., Vol. 34 (6), pp.1019-1030.
[12] Low, H. Y. and Ishida, H., 1997, “A Study on the Volumetric Expansion of Benzoxazine-Based Phenolic Resin,” Macromolecules, vol.30, pp. 1099.
[13] Kim, H. J., Brunovska, Z. and Ishida, H., 1999, "Molecular characterization of the polymerization of acetylene-functional benzoxazine resins," Polymer, Vol. 40, pp. 1815-1822.
[14] Nair, C. P. R., 2004, "Advances in addition-cure phenolic resins," Prog. Polym. Sci., Vol. 29, pp. 401-498.
[15] Ning, X. and Ishida, H., 1994, "Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-A based benzoxazines and their polymers," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 32, pp. 1121-1129.
[16] Ishida, H. and Rodriguez, Y., 1995, "Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry," Polymer, Vol. 36, pp. 3151-3158.
[17] Xiang, H., Ling, H., Wang, J., Song, L. and Gu, Y., 2005, "A novel high performance RTM resin based on benzoxazine," Polymer Composites, Vol. 26(5), pp. 563-571.
[18] Xu, M., Yang, X., Zhao, R. and Liu, X., 2013, "Copolymerizing behavior and processability of benzoxazine/epoxy systems and their applications for glass fiber composite laminates," Journal of Applied Polymer Science, Vol. 128, pp. 1176-1184.
[19] Chanchira, J., Tsutomu, T., Salim, H. and Sarawut, R., 2008, "High performance wood composites based on benzoxazine-epoxy alloys,"Bioresource Technology, vol. 99, pp.8880-8886
[20] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., 2004, "Electric Field Effect in Atomically Thin Carbon Films," Science, Vol. 306, pp. 666-669.
[21] “Graphene,” Http://zh.wikipedia.org/, 2011.
[22] 蕭慕柔, 2012, “電解剝落法之石墨表面性質探討,” 國立中央大學化學工程與材料工程學系碩士論文.
[23] Lee, C., Wei, X., Kysar, J. W. and Hone, J., 2008, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, Vol. 321, pp. 385-388.
[24] Li, W., Dichiara, A. and Bai, J., 2012, “Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites”, Composites Science and Technology, Vol. 74, pp.221-227.
[25] Bortz, D. R., Heras, E. G. and Martin-Gullon, I., 2011, "Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites," Macromolecules, Vol. 45, pp. 238-245.
[26] Shen, X. J., Pei, X. Q., Fu, S. Y and Klaus, F., 2012, “Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content,” Polymer, Vol. 54, pp.1234-1242
[27] Shen, X. J., Pei, X. Q., Liu, Y. and Fu, S. Y., 2013, "Tribological performance of carbon nanotube–graphene oxide hybrid/epoxy composites," Composites: Part B, Vol. 57 , pp.120-125
[28] Zaman, I., Tam, T. P., , Hsu, C. K., Qing, S. M., Bao La, L. T., Lee, L., Youssf, O. and Ma, J., 2011, "Epoxy/graphene platelets nanocomposites with two levels of interface strength," Polymer, Vol. 52, pp. 1603-1611.
[29] Kimura, H., Ohtsuka, K. and Matsumoto, A., 2010, "Performance of graphite filled composite based on benzoxazine resin," Journal of Applied Polymer Science, Vol. 117, pp. 1711-1717.
[30] Rahmanian, S., Suraya, A. R., Shazed, M. A., Zahari, R. and Zainudin, E. S., 2014, "Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers," Materials and Design, vol. 60 , pp.34-40
[31] Suvarna, R., Arumugam, V., Bull, D. J., Chambers, A. R. and Santulli, C., 2014 "Effect of temperature on low velocity impact damage and post-impact flexural strength of CFRP assessed using ultrasonic C-scan and micro-focus computed tomography," Composites: Part B, vol. 66, pp.58-64.
[32] Etaati, A., Pather, S., Fang, Z. P. and Wang, H., 2013, " Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites," Composites: Part B, vol. 51, pp.270-275.
[33] Mechakra, H., Nour, A., Lecheb, S. and Chellil, A., 2015, "Mechanical characterizations of composite material with short Alfa fibers reinforcement", Composites Structures, vol. 124, pp.152-162.
[34] Talreja, R., 1987, "Fatigue of composite materials," Pennsylavania U.S.A.: Technomic.
[35] Harris, B., Reiter, H., Adam, T., Dickson, R. F. and Fernando, G., 1990, "Fatigue behaviour of carbon fibre reinforced plastics," Composites, Vol. 21, pp. 232-242.
[36] Paris, P. and Erdogan, F., 1963, "A Critical Analysis of Crack Propagation Laws," Journal of Fluids Engineering, Vol.85, pp. 528-533.
[37] Hwang, W. and Han, K. S., 1986, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, vol. 20, pp.154–165.
[38] Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S. and Geim, A. K., 2006, "Raman Spectrum of Graphene and Graphene Layers," Physical Review Letters, Vol. 97, pp. 187401(1)-187401(4).
[39] ASTM D638-10, 2010, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards.
[40] ASTM D3039/D3039M-14, 2014, “Standard Test Method forTensile Properties of Polymer Matrix Composite Materials,” Annual Book of ASTM Standards.
[41] ASTM D790-10, 2010, “Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards.
[42] ASTM D256-10, 2010, “Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics,” Annual Book of ASTM Standards.
[43] ASTM D7136/D7136M-12, 2012, “Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event,” Annual Book of ASTM Standards.
[44] ASTM D570-98, 2010, “Standard Test Method for Water Absorption of Plastics,” Annual Book of ASTM Standards.
[45] 林秀臨, 2015, “多壁奈米碳管/石墨烯微片/氧代氮代苯并環已烷/環氧樹脂碳纖維積層板複合材料之機械性質暨疲勞壽命研究,” 國立清華大學動力機械工程學系碩士論文.