研究生: |
呂文龍 |
---|---|
論文名稱: |
在G-凸空間上的推廣型變分不等式定理和大中取小不等式定理 |
指導教授: | 張東輝 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 19 |
中文關鍵詞: | G- 凸空間 、G-KKM(X,Y) 、φ-G-擬凹函數 、變分不等式 、大中取小不等式 |
外文關鍵詞: | G-convex space, G-KKM(X,Y), φ-G-quasiconcave, variational inequality, minimax inequality |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
設X是一個非空G-凸空間,Y是一個拓樸空間,F屬於G-KKM(X,Y),ψφ:X×Y→R 為二實值函數。在一些假設條件之下,我們證得一些推廣型的變分不等式。我們也證明了四個實值函數,在某些假設條件之下的一些大中取小不等式的存在性定理。本文的結果推廣了許多學者的研究結果。(特殊符號無法顯現請參閱PDF檔)
Let X be a nonempty G-convex space, let Y be a topological space, let F be G-KKM(X,Y), and let ψ,φ:X×Y→R be two real-valued mappings. In this paper, we establish some generalized variational inequality theorems under some assumptions. We also establish some minimax inequality theorems concerning four real-valued mappings under some assumptions. Our results generalize many other authors’ results.(特殊符號無法顯現請參閱PDF檔)
[1] Q. H. Ansari, A. Idzik, and J. C. Yao, Coincidence and fixed point theorems with applications, Topol. Methods Nonlinear Anal. 15(2000), 191-202.
[2] K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1989.
[3] Mircea Balaj, Weakly G-KKM mappings, G-KKM property, and minimax inequalities, J. Math. Anal. Appl. 294(2004), 237-245.
[4] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233.
[5] S. S. Chang, B. S. Lee, X. Wu, Y. J. Cho, and G. M. Lee, On the generalized quasivariational inequality problems, J. Math. Anal. Appl. 203(1996), 686-711.
[6] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
[7] X. P. Ding, Coincidence theorems in topological spaces and their applications, applied. Math. Lett. 12(1999), 99-105.
[8] X. P. Ding, Existence of solutions for quasi-equilibrium problems in noncompact topological spaces, Comput. Math. Appl. 39(2000), 13-21.
[9] X. P. Ding and J. Y. Park, Fixed points and generalized vector equilibrium problems in generalized convex spaces, Indian J. Pure Appl. Math. 34(6)(2003), 973-990.
[10] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961),305-310.
[11] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984),519-537.
[12] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137.
[13] Y. L. Lee, G-S-KKM theorem and its applications, Graduate Institute of Mathematics and Science, NHCTC, Hsin Chu, Taiwan. (2003)
[14] F. J. Liu, On a form of KKM principle and supinfsup inequalities of von Neumann and Ky Fan type, J. Math. Anal. Appl. 155(1991), 420-436.
[15] L. J. Lin, Applications of a fixed point theorem in G-convex space, Nonlinear Anal. 46(2001), 601-608.
[16] L. J. Lin, Q. H. Ansari, and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems, J. Optim. Theory Appl. 117(1)(2003), 121-137.
[17] L. J. Lin and H. I. Chen, Coincidence theorems for family of multimaps and their applications to equilibrium problems, J. Abstr. Anal. 5(2003), 295-305.
[18] L. J. Lin and S. Park, On some Generalized quasi-equilibrium problems, J. Math. Anal. Appl. 224(1998), 167-181.
[19] L. J. Lin, System of coincidence theorems with applications, J. Math. Anal. Appl. 285(2003), 408-418.
[20] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004), 105-122.
[21] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97(1983), 151-201.
[22] Y. J. Lin and G. Tina, Minimax inequalities equivalent to the Fan-Knaster- Kuratowski-Mazurkiewicz theorem, Appl. Math. Optim. 28(1993), 173-179.
[23] S. Park, Foundations of the KKM theory via coincidences of composites of upper semi-continuous maps, J. Korean Math. Soc. 31(1994), 164-176.
[24] S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197(1996), 173-187.
[25] S. Park and H. Kim, Functions of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209(1997), 551-571.
[26] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
[27] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389.
[28] G. Tina and J. Zhou, Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization, J. Math. Econom. 24(1995), 281-303.
[29] Z. T. Yu and L. J. Lin, Continuous selection and fixed point theorems, Nonlinear Anal. 52(2003), 445-453.