簡易檢索 / 詳目顯示

研究生: 劉畊甫
Liu, Keng-Fu
論文名稱: 中間層對超奈米微晶鑽石膜成長的影響
Effect of buffer layer on the growth behavior of UNCD films
指導教授: 戴念華
Tai, Nyan-Hwa
林諭男
Lin, I-Nan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 86
中文關鍵詞: 超奈米微晶鑽石表面聲波元件
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗發現在製程中加入鉬薄膜中間層,明顯的促進超微晶奈米鑽石(UNCD)薄膜在矽基板上的成核與成長。鑽石膜在矽基板上並不容易成核,但在預鍍一層鉬薄膜當中間層之後,在矽基板上可以成長品質良好的UNCD。雖然鉬薄膜明顯的促進了UNCD的成核,但是它導致了UNCD場發特性變差,因為在成長UNCD時鉬薄膜會形成一層碳化鉬層,此碳化鉬層會阻擋矽基板與UNCD之間電子的傳遞。本實驗利用較厚的鉬薄膜促進了UNCD的成核,並且降低其對場發射特性的影響,其啟始電場為13 V/□m,在電場30 V/□m下電流密度為55 mA/cm2。
    另外,本實驗欲利用超微晶奈米鑽石(UNCD)薄膜搭配氮化鋁壓電薄膜作為表面聲波元件的基板,但由於氮化鋁成長在UNCD上會有裂膜的現象發生,所以本實驗在UNCD沈積氮化鋁前先沈積一層鋁金屬當緩衝層,之後再成長氮化鋁薄膜。而實驗中製作表面聲波元件電極的方法則是利用奈米轉印法來製作。


    In this study, we found that Mo-coating on Si-substrate can significantly improve the formation of diamond nuclei and the growth behavior of ultra- nanocrystalline diamond (UNCD)films. Contrary to the phenomenon that diamond nuclei are only scarcely formed on bare Si-substrates, this work can growth high quality UNCD films on the Mo-coated Si- substrates. While the Mo-coating markedly enhances the nucleation of diamonds, it degrades the electron field emission (EFE) properties of UNCD films. It is attributed to the conversion of the conducting Mo- metallic film into a resistive Mo2C layer during growth of UNCD films. A sufficiently thick Mo-layer is found to enhance the nucleation of diamonds, while minimizing deleterious effect on their EFE properties with an improved turn-on-field of 13 V/□m and a current density of 55 mA/cm2 at the applied field of 30 V/□m.
    Moreover, we try to fabricate a SAW device using UNCD films incorporated with AlN piezoelectric films. Because AlN films peel off easily on UNCD films, the coated Al films are acted as buffer layer for AlN growth. The electrode of SAW devices was fabricating using the nano-transfer printing process.

    摘 要 □ 誌謝 □□□ 目錄 V 圖目錄 VIII 表目錄 XII 第一章 研究動機 1 第二章 文獻回顧 3 2.1 鑽石的基本性質 3 2.1.1碳的同位素 3 2.1.2鑽石的特性 4 2.2 人工鑽石的發展 5 2.3 鑽石薄膜分類與成長 6 2.3.1 鑽石薄膜的分類 6 2.3.2 以氫電漿為主要系統的MCD鑽石沉積 7 2.3.3 以氬電漿為主要系統的UNCD 鑽石沉積 8 2.4 鑽石薄膜的成核機制 9 2.4.1 基板選擇對鑽石成核的影響 10 2.4.2 基板前處理對鑽石成核的影響 11 2.5 電子場發射理論 12 2.6 表面聲波元件 15 2.6.1 表面聲波元件之簡介 15 2.6.2 壓電效應 16 2.6.3 壓電薄膜-鑽石基板層式表面聲波元件 17 2.6.4 範例 19 第三章 實驗分析及方法 30 3.1中間層對超奈米微晶鑽石膜成長的影響 30 3.1.1 沈積鉬薄膜於矽基板上 30 3.1.2 沉積超奈米微晶鑽石薄膜 30 3.1.3 鑽石薄膜分析設備 32 3.2 氮化鋁—奈米晶鑽石表面聲波元件 35 3.2.1 成長氮化鋁—鑽石薄膜基板 35 3.2.2 表面聲波元件的製作 37 3.2.3 元件製作分析 39 第四章 結果與討論 44 4.1中間層對超奈米微晶鑽石膜成長的影響 44 4.1.1 表面形貌分析(SEM) 44 4.1.2 拉曼光譜分析(Raman) 45 4.1.3 場發射性質的量測 46 4.1.4 四點探針量測系統 47 4.1.5 材料晶體結構之分析(XRD) 48 4.1.6 表面成分分析(ESCA) 49 4.1.7 近邊緣X射線吸收精細結構(NEXAFS) 50 4.1.8 穿透式電子顯微鏡(TEM) 50 4.1.9 小結 52 4.2 氮化鋁—奈米晶鑽石表面聲波元件 54 4.2.1 成長氮化鋁—鑽石薄膜基板 54 4.2.2 表面聲波元件的製作 57 4.2.3 小結 60 第五章 結論 77 參考文獻 79 圖目錄 圖2.1 鑽石的結構圖 25 圖2.2 石墨的結構圖 25 圖2.3 碳的平衡相圖 26 圖2.4 C2物種插入鑽石晶粒之示意圖 26 圖2.5 鑽石在不與碳反應基板上的成核機制 27 圖2.6 鑽石在會與碳反應的基板上的成核機制 27 圖2.7 表面聲波元件基本結構 28 圖2.8 (a) 壓電效應; (b) 逆壓電效應 28 圖2.9 氧化鋅-鑽石層狀結構上表面聲波相速度與膜厚關係 29 圖2.10 (a)層狀結構與指叉狀電極位置關係(b)其對應的有效耦合係數 29 圖3.1 濺鍍系統 40 圖3.2 IPLAS 微波輔助化學氣相沈積系統 40 圖3.3 電子場發射量測系統示意圖 41 圖3.4 四點探針量測示意圖 41 圖3.5 表面聲波元件之製作流程 42 圖3.6 蒸鍍法示意圖 43 圖3.7 高精度雙(向)面對位真空熱壓成型機 43 圖4.1 矽基板經過超音波震盪前處理(a) 10分鐘和(b) 30分鐘後,成長30分鐘UNCD之SEM影像 62 圖4.2 矽基板先鍍上50 nm鉬薄膜後作超音波震盪前處理(a) 10分鐘(b) 30分鐘,並成長30分鐘UNCD之SEM影像 62 圖4.3 矽基板先鍍上100 nm鉬薄膜後作超音波震盪前處理(a) 10分鐘(b) 30分鐘,並成長30分鐘UNCD 之SEM影像 63 圖4.4 矽基板經過超音波震盪前處理10分鐘(S1)和30分鐘(S2)後,成長30分鐘UNCD之Raman圖 63 圖4.5 矽基板鍍上鉬薄膜50 nm(M1)、100 nm(M2)後經超音波震盪前處理30分鐘後,成長30分鐘UNCD之Raman圖 64 圖4.6 矽基板經過超音波震盪前處理10分鐘(S1)和30分鐘(S2)後,成長30分鐘UNCD之場發射性質量測結果 64 圖4.7 矽基板鍍上鉬薄膜50 nm(M1)、100 nm(M2)後經超音波震盪前處理30分鐘後,成長30分鐘UNCD之場發射性質量測結果 65 圖4.8 Mo/Si試片(I.)與沈積UNCD 30分鐘於Mo/Si(II.)試片的X光繞射圖譜 65 圖4.9 UNCD成長在Mo/Si試片上的ESCA(C1s)曲線 66 圖4.10 UNCD成長在Mo/Si試片上的ESCA(Mo1s)曲線 66 圖4.11 UNCD成長在Mo/Si試片上180分鐘的NEXAFS圖譜 67 圖4.12 UNCD/Mo/Si試片(a)表面、(b)側面的TEM影像 67 圖4.13 (a) UNCD/Mo/Si試片中鉬薄膜與矽基板間介面附近的的側面TEM影像,(b)為圖(a)圈選區的傅立葉轉換影像 68 圖4.14 UNCD/Mo/Si試片中鉬薄膜與UNCD間介面附近的側面TEM影像 68 圖4.15 (a)UNCD/Mo/Si試片中鉬薄膜與UNCD間中間層的側面TEM影像; (b)圖(a)圈選處的傅立葉轉換後之對應繞射點 69 圖4.16 矽基板上濺鍍4小時氮化鋁的SEM(a)表面與(c)側面影像 70 圖4.17 以RF功率250 W濺鍍4小時氮化鋁於矽基板上的XRD分析 70 圖4.18 成長UNCD 1.5小時於AlN/Si上的SEM(a)表面與(b)側面影像 70 圖4.19 成長於AlN/Si上UNCD的拉曼分析 71 圖4.20 成長AlN/Al/UNCD/Si基板的SEM(a)表面與(b)側面影像 71 圖4.21 以RF功率250 W成長氮化鋁於Al/UNCD/Si試片上的XRD分析 72 圖4.22 (a)Al/UNCD/Si基板與(b)UNCD/Si基板的XRD分析 72 圖4.23 以RF功率(a)300 W、(b)325 W、(c)350 W成長氮化鋁於Al/UNCD/Si基板的SEM表面與側面影像 73 圖4.24 以RF功率250~300 W成長氮化鋁於Al/UNCD/Si試片上的XRD分析 74 圖4.25 以RF功率250∼300 W成長氮化鋁於Al/UNCD/Si試片上的Rocking curve分析 74 圖4.26 圖4.26 以RF功率250∼300 W成長氮化鋁於Al/UNCD/Si試片上的AFM影像 75 圖4.27 (a)模具;以Si試片為基板在(b)壓印溫度110℃、(c)壓印溫度130℃經奈米轉印製程後的試片 75 圖4.28 (a)、(b)模具在光學顯微鏡下的影像;(c)、(d)奈米轉印製程後試片的SEM影像。 76 圖4.29 (a)、(b)奈米轉印製程後試片的側面SEM影像 76 圖4.30 奈米轉印EDS分析 77 圖4.31 以UNCD/AlN/Si試片為基板在(a)壓印溫度155℃、(b)壓印溫度195℃經奈米轉印製程後的試片 77 表目錄 表2.1 鑽石的特性參數 22 表2.2 不同種類鑽石膜之特性比較 23 表2.3 各種壓電材料及其基本特性 24 表4.1 UNCD、矽基板與UNCD到矽基板表面的片電阻 62

    [1] A. Lavoisier, “Elements of Chemistry”, Dover Publications (1772).
    [2] Willem J.P. Van Enckevort, “Physical, chemical and microstructural characterisation and properties of diamond in Synthetic diamond: emerging CVD science and technology”, edited by Spear, K.P. and Dismukes, J.P., J. Wiley & Sons, Inc., New York (1994).
    [3] May, P.W., Molecule of the Month, July 1996.
    [4] Yoder, M.N., “The vision of diamond as an engineered material in Synthetic diamond: emerging CVD science and technology”, edited by Spear, K.P. and Dismukes, J.P., J. Wiley & Sons, Inc., New York (1994).
    [5] May, P.W., “CVD diamond - a new technology for the future”, Endeavour, 19, 101 (1995).
    [6] A. R. Krauss, O. Auciello, D. N. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C.Mmancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E.M. Meyer, and M. Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices”, Diamond and Related Materials, 10,
    1952 (2001).
    [7] L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structure in nanocrystalline diamond”, Applied Physics Letters, 81, 4455 (2002).
    [8] J K Luo, Y Q Fu, H R Le, J A Williams, S M Spearing and W I Milne, “Diamond and diamond-like carbon MEMS”, Journal of Micromechanicals and Microengineering, 17(7), 147 (2007).
    [9] J. Wang, M. A. Firestone, O. Auciello, and J. A. Carlisle, “Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of Aryldiazonium salts”, Langmuir, 20, 11450 (2004).
    [10] K. Yamanouchi, N. Sakurai, and T. Satoh, “SAW propagation characteristics andfabrication technology of piezoelectric thin film/diamond structure”, 1989 IEEE Ultrasonics Symposium, 351 (1989).
    [11] H. Nakahata, A. Hachigo, K. Itakura, and S. Shikata, “Fabrication of high frequency SAW filters from 5 to 10 GHz using SiO2/ZnO/Diamond structure”, 2000 IEEE Ultrasonics Symposium, 349 (2000).
    [12] B. Bi, W. S. Huang, J. Asmussen, and B. Golding, “Surface acoustic waves on nanocrystalline diamond”, Diamond and Related Materials, 11, 677 (2002).
    [13] F. Benedic, M. B. Assouar, F. Mohasseb, O. Elmazria, P. Alnot, and A. Gicquel, “Surface acoustic wave devices based on nanocrytalline diamond and aluminium nitride”, Diamond and Related Materials, 13, 347 (2004).
    [14] Bensmaine S, Le Brizoual L, Elmazria O, Fundenberger JJ, Belmahi M, Benyoucef B, “SAW devices based on ZnO inclined c-axis on diamond”, Diamond and Related Materials, 17(7), 1420 (2008).
    [15] Lee YC, Lin SJ, Buck V, Kunze R, Schmidt H, Lin CY, Fang WL, Lin IN, “Surface acoustic wave properties of natural smooth ultra-nanocrystalline diamond characterized by laser-induced SAW pulse technique”, Diamond and Related Materials, 17(4), 446 (2008).
    [16] W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S, Kerns, “Recent development of diamond microtip field emitter. cathodes and devices”, J. Vac. Sci. Technol. B, 19, 936 (2001).
    [17] P. W. Bridgman, "Synthetic diamonds", Scientific American, 193, 42 (1955).
    [18] W. G. Eversole, U.S. Patent No. 3,030,188, (1962).
    [19] J. C. Angus, H. A. Will, and W. S. Stanko,”Growth of diamond sees crystals vapor deposition”, Journal of Applied Physics, 39, 2915 (1968).
    [20] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, Journal of Crystal Growth, 52, 219 (1981).
    [21] S. Matzumoto, Y. Sato, M. Kamo, and N. Setaka, “Vapor deposition of diamond particles from methane”, Japanese Journal of Applied Physics 2, 21, L183 (1982).
    [22] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka,”Diamond synthesis from gas-phase in microwave plasma” Journal of Crystal Growth, 62, 642 (1983).
    [23] D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X. Pan, “Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions”, Applied Physics Letters, 64, 1502 (1994).
    [24] T. D. McCauley, D. M. Gruen, and A. R. Krauss, “Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma”, Applied Physics Letters, 73, 1646 (1998).
    [25] D. M. Gruen, “Nanocrystalline diamond films”, Annual Review Material Science, 29, 211 (1999).
    [26] C.J. Rennick, A.G. Smith, J.A. Smith, J.B. Wills, A.J. Orr-Ewing, M.N.R. Ashfold, Yu.A.Mankelevich, N.V. Suetin, “Improved characterization of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition” Diamond and Related Materials, 13, 561(2004).
    [27] Ljubisa R. Radovic, “Chemistry and physics of carbon”, New York :Marcel Dekker, 29,117 (2004).
    [28] David A. Horner, Larry A. Curtiss, Dieter M. Gruen, “A theoretical study of the energetics of insertion of dicarbon (C2) and vinylidene into methane C-H bonds” Chemical Physics Letters 233, 243 (1995).
    [29] L. Constant, C. Speisser and F. Le Normand, “HFCVD diamond growth on Cu(111). Evidence for carbon phase transformations by in situ AES and XPS’’, Surface Science , 387, 28 (1997).
    [30] Atsuhito Sawabe, Hideo Fukuda, Tosiyuki Suzuki, Yuichi Ikuhara, Tesuya Suzuki,“Interface between CVD diamond and iridium films”, Surface Science, 467, 845 (2000).
    [31] T. Sharda, T. Soga, T. Jimbo, and M. Umeno, “Biased enhanced growth of nanocrystralline diamond films by microwave plasma chemical vapor deposition”, Diamond and Related Materials, 9, 1331 (2000).
    [32] Z. Sitar, W. Liu, P. C. Yang, C. A. Wolden, R. Schlesser, J. T. Prater, “Heteroepitaxial nucleation of diamond on nickel” Diamond and Related Materials , 7, 276 (1998).
    [33] R. Haubner, A. Lindlbauer and B. Lux, “Diamond nucleation and growth on refractory metals using microwave plasma deposition", Int. J. of Refractory Metals & Hard Materials , 14, 119 (1994).
    [34] Fumitaka Togashi, “Synthesis and morphology of CVD diamond on Ta and TaC film”, Journal of Crystal Growth, 128, 418 (1993).
    [35] M. A. Brewer, I. G. Brown, P. J. Evans and A. Hoffman, “Diamond films growth on Ti-implanted glassy carbon”, Applied Physics Letters, 63, 1631 (1993).
    [36] R. H. Fowler, L. W. Nordheim,” Electron emission in intense electric fields”, Proc. Roy. Soc. London, Ser. , A119, 173 (1928).
    [37] L. Nordheim, “On the kinetic method in the new statistics and its application in the electron theory of conductivity” Proc. Roy. Soc. London Ser. , A121, 626 (1928).
    [38] D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., 55 (AIEE, New York (1958).
    [39] M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker and J. F. Hochedez, “Diamond Cold-Cathode.” IEEE Electron Device Lettters, 12, 456 (1991).
    [40] Lord Rayleigh, “On waves propagating along the plane surface of an elastic soild.” Proc. London Math. Soc., 7, 4 (1885).
    [41] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Applied Physics Letters, 17, 314 (1965).
    [42] T. E. Parker and M. B. Schulz, “Temperature stable surface acoustic wave delay lines with SiO2 film overlays”, Ultrasonics Symposium Proceedings, 295 (1974).
    [43] K. Yamanouchi, N. Sakural, and T. Satoh, “SAW propagation characteristics and fabrication technology of piezoelectric thin film/ diamond structure”, Ultrasonics Symposium, 351 (1989).
    [44] H. Nakahata, A. Hachigo, K. Higaki, S. Fujii, S. Shikata, and N. Fujimori, “Theoretical study on SAW characteristics of layered structures including a diamond layer”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42, 362 (1995).
    [45] H. Nakahata, A. Hachigo, K. Itakura, S. Fujii, and S. Shikata, “SAW resonators of SiO2/ZnO/Diamond structure in GHz range”, IEEE/EIA International Frequency Control Symposium and Exhibition, 315 (2000).
    [46] C. Caliendo, “Gigahertz-band eletroacoustic devices based on AlN thick films sputtered on Al2O3 at low temperature”, Applied Physics Letters, 83, 4851 (2003).
    [47] H. Nakahata and N. Fujimori, “Surface acoustic wave device”, U.S.Patent No. 5,221,870, (1993).
    [48] A. Springer, F. Hollerweger, R. Weigel, S. Berek, R. Thomas, W. Ruile, C. W. Ruppel, and M. Guglielmi, “Design and performance of a SAW ladder-type filter at 3.15 GHz using SAW mass-production technology”, IEEE Transactions on Microwave Theory and Techniques, 47, 2312 (1999).
    [49] K. Yamanouchi, Y. Cho, and T. Meguro, “SHF-range surface acoustic wave inter-digital transducers using electron beam exposure”, Ultrasonics Symposium, 115 (1988).
    [50] K. Yamanouchi, N. Sakural, and T. Satoh, “SAW propagation characteristics and fabrication technology of piezoelectric thin film/ diamond structure”, Ultrasonics Symposium, 351 (1989).
    [51] F. Bénédic, M.B. Assouar , P. Kirsch , D. Monéger , O. Brinza,
    O. Elmazria , P. Alnot , A. Gicquel, “Very high frequency SAW devices based on nanocrystalline diamond and aluminum nitride layered structure achieved using e-beam lithography”, Diamond & Related Materials, 17, 804 (2008).
    [52] Swati Shandilya, K Sreenivas and Vinay Gupta, “Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO3 and diamond”, Journal of Physics D-Applied Physics, 41,025108 (2008).
    [53] M. E. Hakiki, O. Elmazria, M. B. Assouar, V. Mortet, A. Talbi, and F. Sarry, “High SAW velocity and high electromechanical coupling coefficient with the new three layered structure: ZnO/AlN/diamond”, IEEE Ultrasonics Symposium, 195 (2004).
    [54] M. Beck , M. Graczyk, I. Maximov, E.-L. Sarwe, T.G.I. Ling, M. Keil, L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography”, Microelectronic Engineering, 61, 441 (2002).
    [55] Huimin Liu, David S. Dandy, “Review: Studies in nucleation process in diamond CVD: an overview of recent developments”, Diamond and Related Materials, 4, 1173 (1995).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE