簡易檢索 / 詳目顯示

研究生: 簡世杰
Chien, Shih Chieh
論文名稱: 寬頻與多頻段毫米波前端電路
Wideband and Multiband Millime-ter-Wave Front-End Circuits
指導教授: 劉怡君
Liu, Yi Chun
口試委員: 徐碩鴻
Hsu, Shuo- ung
郭建男
Kuo, Chien Nan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 115
中文關鍵詞: 寬頻多頻段壓控震盪器低雜訊放大器功率放大器
外文關鍵詞: Wideband, Multiband, VCO, LNA, PA
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高速的點到點通訊和實時多媒體串流的需求,越來越多的毫米波通訊標準被提出,像是未來5G的通訊協定、802.11ad等。因此完全集成的寬頻和多頻段壓控震盪器、低雜訊放大器和功率放大器在這幾年被廣為研究。然而,寬頻和多頻段的前端電路比起窄頻電路要達到高的表現是更為複雜和有挑戰的,像是低相位雜訊的壓控震盪器、低雜訊因數的低雜訊放大器和高效率的功率放大器。
    本論文主要討論被動元件的理論分析和上述三種電路的基本知識和設計方法,並且提出五個電路設計。其中有兩個使用高階的諧振電路以達成多頻段的震盪、開關式諧振電路以達成較寬的調頻範圍和數位控制人工介電質傳輸線來達成中度調頻的毫米波寬頻和多頻段的壓控震盪器;一個在輸入匹配使用四階諧振電路以達成雙頻段的匹配和帶通濾波器與帶阻濾波器所組成的同步雙頻段低雜訊放大器和兩個使用內建帶阻濾波變壓器、混合型層疊、中和電容、並聯串聯式功率結合器的功率放大器。第一個壓控振盪器使用0.7V的電壓,達到-187.8的質量因數,第二個壓控振盪器使用0.9V的電壓,並在三個頻段達到-180, -173.4和-147.5的質量因數。低雜訊放大器在2.7V的電壓下達到兩個頻段0.6dB的增益不匹配,在兩個頻段的雜訊因數分別為5.78和6.03。第一個功率放大器使用3V的電壓在兩個頻段達到14.1%和4.6%的效率,第二個使用1.5V的電壓在兩個頻段達到9.4%和2.9%的效率。


    With the high demands of the high-speed point-to-point communications and real time multimedia streaming, increasing communication standards are proposed at the millimeter-wave band. Fully integrated wideband and multi-band voltage-controlled oscillators (VCOs), low-noise amplifiers (LNAs) and power amplifiers (PAs) have gained momentum in the past few years. However, the designs of the wideband and multi-band front-end circuits are complicated and challenging in order to achieve high performance on the specifications such as the phase noise of the VCO, the noise figure of the LNA and the efficiency of the PA. In this thesis, fundamental of these circuits are first revisited followed by the design methodologies and discussion of five novel works. Two millimeter-wave wideband and multi-band VCOs are introduced with a high order tank, a switch resonator, and digital controlled artificial dielectric (DiCAD) transmission line. A unique architecture with a 4th-order tank in a dual-band input matching network and a bandpass filter with a notch is proposed to achieve a concur-rent dual-band LNA. Finally, two PAs are designed to provide the concurrent du-al-band operation by leveraging a built-in notch of a transformer that couples from adjacent stages.

    ACKNOWLEDGEMENT iii ABSTRACT iv 摘要 v CONTENTS vi LIST OF FIGURES x LIST OF TABLE xv CHAPTER 1 Introduction 1 1.1 Introduction to Millimeter-Wave Systems and Applications 1 1.2 Introduction to Multi-band Systems 2 1.3 The Challenges and Pioneering Developments in MM-Wave Multi-Band VCOs 3 1.4 The Challenges and Pioneering Developments in MM-Wave Concurrent Mul-ti-Band LNA 5 1.5 The Challenges and Pioneering Developments in MM-wave Concurrent Mul-ti-Band PA 5 CHAPTER 2 Design of Passive Devices in CMOS Process 6 2.1 Inductors 6 2.1.1 Basics 6 2.1.2 On-Chip Inductors 7 2.1.3 Substrate Loss in Inductors 8 2.1.4 Equivalent Circuit Models of On-chip Inductor 9 2.1.5 Single-Ended and Differential Driven On-Chip In-ductors 9 2.2 Transformers 11 2.2.1 Ideal Transformers 11 2.2.2 Coupled Inductors 12 2.2.3 Equivalent Circuits of Coupled Inductors 14 CHAPTER 3 MM-Wave LC Voltage-Controlled Oscillator 16 3.1 Introduction to Oscillators 16 3.2 Design of LC Cross-Coupled Oscillator 16 3.2.1 Startup Conditions 17 3.2.2 Oscillation Frequency Tuning 20 3.2.3 Phase Noise 21 3.3 Other LC Oscillator Topologies 25 3.3.1 Class-B Oscillator with Tail Filter 26 3.3.2 Class-C Oscillator 27 3.3.3 Class-D Oscillator 28 3.3.4 Class-F Oscillator 30 3.4 A 0.7-V Low-Phase-Noise Multi-Mode Coupled Class-B/Class-C Volt-age-Controlled Oscillator for Millimeter-Wave Applications 31 3.4.1 Overall Structure 31 3.4.2 Proposed Switched Coupled Inductor Resonator 31 3.4.3 Class-B/Class-C Coupled Colpitts Oscillator 36 3.4.4 Body-Biased PMOS Varactors 37 3.4.5 Push-Push Technique with a Fundamental Notch 38 3.4.6 Measurement Results 39 3.5 A Multi-Mode Ka/V/W Tri-band Switched-Transformer Voltage-Controlled Oscillator in 90-nm CMOS 41 3.5.1 Overall Structure 41 3.5.2 Tri-Band 6th-Order Resonator 41 3.5.3 Proposed Switched Transformer 43 3.5.4 DiCAD Design 44 3.5.5 Cross-Coupled Pair Layout 45 3.5.6 Measurement Results 45 CHAPTER 4 MM-Wave Multi-Band Low-Noise Amplifier 48 4.1 Introduction to Low-Noise Amplifier 48 4.1.1 Impedance Matching 48 4.1.2 Noise Figure 50 4.1.3 Linearity 54 4.1.4 Stability 56 4.1.5 LNA Design Procedures 57 4.2 Concurrent Multi-band LNA Design 59 4.3 A Dual Band LNA Prototype in 0.18-m BiCMOS 61 4.3.1 Overall Structure 61 4.3.2 Design of Cascode Stage 62 4.3.3 Design of Input Matching Network 64 4.3.4 Dual Band Load Design 66 4.3.5 Simulation and Measurement Results 67 CHAPTER 5 MM-Wave Multi-Band Power Amplifier 71 5.1 Introduction to Power Amplifier 71 5.1.1 Output Matching Network 71 5.1.2 Power Efficiency 72 5.1.3 AM-PM Conversion 73 5.1.4 Adjacent Channel Power Ratio (ACPR) 74 5.1.5 Error Vector Magnitude (EVM) 75 5.2 A Dual Band PA Prototype in 0.18-m BiCMOS 75 5.2.1 Overall Structure 75 5.2.2 Active Devices 76 5.2.3 Transformer with Built-in Notch 78 5.2.4 Active Notch Filter with Negative Resistance 80 5.2.5 Oxalis Deppei Closed Ring Resonator (ODCRR) 81 5.2.6 Adaptive Biasing 83 5.2.7 Two Mode Operation 84 5.2.8 Simulation Results 85 5.3 A Dual Band PA Prototype in 90-nm CMOS 88 5.3.1 Overall Structure 88 5.3.2 CS Stage with Neutralization Capacitor 89 5.3.3 Parallel-Series Power Combiner 91 5.3.4 Simulation Results 92 CHAPTER 6 Conclusion 95

    L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag., pp. 39-50, Sep. 2003.
    H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers-Theory, design, and applications,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, pp. 288-301, Jan. 2002.
    D. D. Kim, J. Kim, J. O. Plouchart, C. Cho, W. Li, D. Lim, R. Trzcinski, M. Kumar, C. Norris, and D. Ahlgren, “A 70 GHz manufacturable complementary LC-VCO with 6.14 GHz tuning range in 65 nm SOI CMOS,” in ISSCC Tech. Dig., Feb. 2007, pp. 540-541.
    J. Jimenez, F. Badets, B. Martineau, and D. Belot, “A 56 GHz LC-tank VCO with 17% tuning range in 65nm bulk CMOS for wireless HDMI applications,” Proc. IEEE Radio Frequency Integrated Circuits Symps. (RFIC), pp. 481-484, Jun. 2009.
    H. K. Chen, H. J. Chen, D. C. Chang, Y. Z. Juang, and S. S. Lu, “A 0.6 V, 4.32 mW, 68 GHz low phase noise VCO with intrinsic-tuned technique in 0.13 CMOS,” IEEE Microw. Wireless Compon. Lett. , vol. 18, no. 7, pp. 467-469, Jul. 2008.
    L. Li, P. Reynaert, and M. S. J. Steyaert, “A 60 GHz CMOS VCO using capacitance-splitting and gate-drain impedance-balancing techniques,” IEEE Trans. Microw. Theory Tech., vol. 59, pp. 406-413, Feb. 2011.
    Z. Li and K. K. O, “A low-phase-noise and low-power multi-band CMOS voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol.40, pp. 1296-1302, Jun. 2005.
    J. Yin and H. C. Luong, “A 57.5–90.1 GHz magnetically tuned multimode CMOS VCO,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp.1851-1861, Aug. 2013.
    S. Ma, W. Fei, H. Yu, and J. Ren, “A 75.7 GHz to 102 GHz rotary-traveling-wave VCO by tunable composite right/left hand T-line,” in Custom Integrated Circuits Conference (CICC), Sept. 2013, pp.l-4.
    Z.Safarian and H.Hashemi, “Wideband multi-mode CMOS VCO design using coupled inductors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, pp. 1830–1843, 2009.
    A. Bevilacqua, F. P. Pavan, C. Sandner, A. Gerosa, and A. Neviani, “A 3.4–7 GHz transformer-based dual-mode wideband VCO,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), 2006, pp. 440-443.
    B. Çatli and M. M. Hella, “A 1.94 to 2.25 GHz, 3.6 to 4.77 GHz tunable CMOS VCO based on double-tuned, double-driven coupled resonators,” IEEE J. Solid-State Circuits, vol. 44, pp. 2463-2477, Sep. 2009.
    S. J. Yun, H. D. Lee, K. D. Kim, S. G. Lee, and J. K. Kwon, “A wide-tuning dual-band transformer-based complementary VCO,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 340-342, Jun. 2010.
    S. Rong and H. C. Luong, “Analysis and design of transformer-based dual-band VCO for software-defined radios,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 3, pp. 449-462, Mar. 2012.
    J. Yin and H. C. Luong, “A 57.5–90.1-GHz magnetically tuned multimode CMOS VCO,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1851-1861, Aug. 2013.
    Xiaohua Yu, Amany El-Gouhary, and Nathan M. Neihart, “A Transformer-Based Dual-Coupled Triple-Mode CMOS LC-VCO,” IEEE Trans. Microw. Theory Tech., vol. 62, pp. 2059-2070, Sep. 2014.
    Meng-Hung Shen and Po-Chiun Huang, “A Wide-Range Multiport LC-Ladder Oscillator and Its Applications to a 1.2–10.1 GHz PLL,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol.23, pp. 184-188, Jan. 2015.
    K.-A. Hsieh, H.-S. Wu, K.-H. Tsai, and C.-K. Tzuang, “A dual-band 10/24-GHz amplifier design incorporating dual-frequency complex load matching,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1649–1657, Jun. 2012.
    N. M. Neihart, J. Brown, and X. Yu, “A dual-band 2.45/6 GHZ CMOS LNA utilizing a dual-resonant transformer-based matching network,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8, pp. 1743–1751, Aug. 2012.
    X. Yu, N. M. Neihart, “Analysis and design of a reconfigurable multimode low-noise amplifier utilizing a multitap transformer,” IEEE Trans. Microwave Theory and Techniques, vol. 61, no. 3, pp. 1236-1246, Mar. 2013.
    Jaeyoung Lee, Cam Nguyen, “A Concurrent Tri-Band Low-Noise Amplifier With a Novel Tri-Band Load Resonator Employing Feedback Notches,” IEEE Trans. Microwave Theory and Techniques, vol. 61, no. 12, pp. 4195-4208, Dec. 2013.
    Kousai, S., Onizuka, K., Song Hu, Hua Wang, A. Hajimiri, “A new wave of CMOS power amplifier innovations: Fusing digital and analog techniques with large signal RF operations,” in Custom Integrated Circuits Conference (CICC), Sept. 2014, pp.l-8.
    Cuong Huynh, Cam Nguyen, “New Technique for Synthesizing Concurrent Dual-Band Impedance-Matching Filtering Networks and 0.18-μm SiGe BiCMOS 25.5/37-GHz Concurrent Dual-Band Power Amplifier,” IEEE Trans. Microwave Theory and Techniques, vol. 61, no. 11, pp. 3927-3939, Nov. 2013.
    Kyoungwoon Kim, Cam Nguyen, “A Concurrent Ku/K/Ka Tri-Band Distributed Power Amplifier With Negative-Resistance Active Notch Using SiGe BiCMOS Process,” IEEE Trans. Microwave Theory and Techniques, vol. 62, no. 1, pp. 125-136, Jan. 2014.
    S. S. Mohan, M. D. Hershenson, S. P. Boyd, and T. H. Lee, “Simple accurate expressions for planar spiral inductances,” IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct. 1999.
    J. R. Long and M. A. Copeland, “The modeling, characterization, design of monolithic inductors for silicon RF IC’s,” IEEE J. Solid-State Circuits, vol. 32, no. 3, pp. 357-369, Mar. 1997.
    T. Cheung and J. Long, “Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1183-1200, May 2006.
    M. Danesh and J. R. Long, “Differentially driven symmetric microstrip inductors,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 332-340, Jan. 2002.
    D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
    A. Hajimiri and T. Lee, “A general theory of phase noise in oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    E. Hegazi, H. Sjoland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no.12, pp. 1921-1930, Dec. 2001.
    A. Mazzanti and P. Andreani, “Class-C harmonic CMOS VCOs, with a general result on phase noise,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008.
    L. Fanori and P. Andreani, “Class-D CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3105-3119, Dec. 2013.
    M. Babaie and R. B. Staszewski, “A class-F CMOS oscillator,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3120–3133, Dec. 2013.
    H.-H. Hsieh and L.-H. Lu, “A high-performance CMOS voltage-controlled oscillator for ultra-low-voltage operations,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 3, pp. 467–473, Mar. 2007.
    C. Yang, C. Chang, J. Lin, and H. Chang, “A 20/40-GHz dual-band voltage-controlled frequency source in 0.13-m CMOS,” IEEE Trans. Microw. Theory Tech., vol.59, no. 8, pp. 2008-2016, Oct. 2011.
    T. LaRocca, S. Tam, D. Huang, Q. Gu, E. Socher, W. Hant, and F. Chang, "Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs," in IEEE MTT-S International Microwave Symposium Digest, pp. 181-184, 15-20 June 2008.
    T. Nguyen, C. Kim, G. Ihm, M. Yang, and S. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1433-1442, May 2004.
    N.M. Neihart , J. Brown and X. Yu, "A dual-band 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network", IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 59, no. 8, pp.1743-1751, Aug. 2012.
    T. Yao, M. Q. Gordon, K. K.W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
    Juntaek Oh and Bonhyun Ku and Songcheol Hong, “A 77-GHz CMOS Power Amplifier With a Parallel Power Combiner Based on Transmission-Line Transformer,” Microwave Theory and Techniques, IEEE Transactions on, vol. 61, no. 7, pp. 2662-2669, July. 2013.
    S. C. Cripps, RF Power amplifiers for Wireless Communications. 2nd ed. Norwood, MA : Artech House, 2006.
    T. Cheung and J. R. Long, “A 21–26-GHz SiGe bipolar power amplifier MMIC,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2583-2597, Dec. 2005.
    Thomas Mattsson, Method of and inductor layout for reduced VCO coupling, U.S. Patent no. 7151430B2, 2006.
    K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys., 2005.
    Ying, Ruan, L. Chen, Y. Liu, F. Ran, and Z. Lai, “A 2.4GHz Monolithic SiGe Power Amplifier for Wireless-LAN Transceiver,” in Asia Pacific Conference on Postgraduate Research, Sept. 2010, pp. 287-290.
    R. Minami, K. Matsushita, H. Asada, K. Okada, and A. Matsuzawa,“A 60 GHz CMOS power amplifier using varactor cross-coupling neutralization with adaptive bias,” in Asia-Pacific Microwave Conference Proceedings (APMC), Dec. 2011, pp. 789-792.
    K. H. An, O. Lee, H. Kim, D. H. Lee, J. Han, K. S. Yang, Y. Kim, J. J. Chang, W.Woo, C.-H. Lee, H. Kim, and J. Laskar, “Power-combining transformer techniques for fully-integrated CMOS power amplifiers,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May 2008.
    Dixian Zhao, P. Reynaert, “An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 63, pp. 683-690, Feb. 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE