研究生: |
羅山馬太 Mathew, Roshan Jesus |
---|---|
論文名稱: |
新穎二維半導體材料:化學氣相沉積合成、材料鑑定、元件製作與未來電學與能源相關之應用 Novel 2D Materials: CVD Synthesis, Characterizations, Device Fabrication, and Future Electronic and Energy Applications |
指導教授: |
陳逸聰
Chen, Yit-Tsong 李志浩 Lee, Chih-Hao |
口試委員: |
陳啟東
Chen, Chii Dong 高翾 Gao, Xuan 雷曼 Sankar, Raman |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 204 |
中文關鍵詞: | 新穎二維半導體材料 、化學氣相沉積合成 |
外文關鍵詞: | Chemical vapour deposition, Energy applications |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用二維材料進行多功能材料的研發與高性能電子元件的製作是開啟未來科技的敲門磚。針對探索二維材料的未來趨勢,本論文將著重在利用化學氣相沉積法進行新穎二維材料的合成、二維材料性質的測量、電子元件的製備以及其在能源與電子領域的應用。本篇論文內容共有三部分:探討(一)大面積、超薄且可調控相的二碲化鎢鉬(MoxW1-xTe2)薄膜在室溫下顯現的磁阻性質;(二)MoxW1-xTe2 奈米鬚於染料敏化太陽能電池(DSCC)中作為高效能的相對電極;以及(三)雙極性單晶二硒化錸(ReSe2)在不對稱電極之下的紅外線發光電晶體(Light emitting transistor, LET)之應用。
在室溫下具有不飽和磁阻性質的高度穩定超薄材料,在未來次世代電磁性電子元件中扮演著舉足輕重的腳色。利用化學氣相沉積法在六方氮化硼基板上合成大面積、毋須轉移基板、高度且可調控晶相的Td-Mo0.27W0.71Te2.02,或是2H- 與 Td-Mo0.22W0.89Te1.89薄膜,Td-Mo0.27W0.71Te2.02薄膜的平均載子遷移率為725 cm2V-1s-1;其不飽和磁阻在溫度5K之下為18%,而在室溫時則為11%。在此三元系統中,反弱局域效應在碲缺乏的2H- 與 Td-Mo0.22W0.89Te1.89的混合晶相薄膜中是首次發現且證實的,該效應表現出受抑制的磁阻性質,而其原因為受到縮減的電子相位相干長度中,反覆出現電子非彈性散射所導致。該研究探討二維外爾半金屬材料(Weyl semi-metallic 2D materials)的大面積與相調控的晶體合成,以供未來對於電磁性質更深入的了解。
新穎多晶MoxW1-xTe2材料為基礎的相對電極,具有高載子遷移率、晶相相依的晶格畸變以及表面電荷密度波的特性,並能夠大幅增強染料敏化太陽能電池中的電子傳輸機構以及電催化能力。此研究中,吾人提供了利用化學氣相沉積法將二元及三元MoxW1-xTe2晶體直接合成在碳布(carbon cloth)上的方法。在其光電的各項參數的分析中,在100次的循環伏安法之下,MoxW1-xTe2/CC相較於在I^-/I_3^- 電解質溶液中的標準Pt/CC電極更為穩定。以1T’- 與 Td-Mo0.66W0.32Te2.02/CC為基礎的染料敏化太陽能電池表現出極低的電阻(0.62 Ω cm2),且可以達成高達16.29 mA cm-2的光電流以及9.40%的效率。值得一提的是,MoxW1-xTe2 奈米鬚在此的功能是作為電子的高速傳輸媒介,藉由縮減載子在電解液中的離子與相對電極間的垂直傳輸路徑,達成增強染料敏化太陽能電池中的反應動力學。此研究展示出具有高載子遷移率、強力的表面態的1T’- 與 Td-Mo0.66W0.32Te2.02/CC奈米鬚結構,可以取代染料敏化太陽能電池的傳統白金電極,並成為高效率的相對電極以供電催化方面的應用。
近紅外光發光元件是理想的非接觸性醫療設備以及高速資料傳輸設備的組件。利用常壓化學氣相沉積法所合成出的二硒化錸(ReSe2)晶體,以此方法所合成的晶體具有卓越的非等相性的結構與幾近完美的元素化學計量比例。利用精準的功函數匹配的非對稱電極元件中,該元件表現出極低的開啟電流以及完美的雙極性電子傳輸性質,其中包含了密度對稱且高載子遷移率的電子與電洞,以及幾乎位於能隙中間的費米能階。在常壓下,經由調頻後的ReSe2元件被觀察到有近紅外線電致發光現象。在光致發光的測量中,該元件所發出的近紅外光功率為0.28 μW。另外,該元件發射出的近紅外光非常的穩定。在偏光的測量中,顯示出ReSe2-LET具有對於激子的非等相性平面內偏振現象。本研究展示了二維材料為基礎的近紅外光發光二極體,有望成為超薄資料傳輸的元件。
Electronic and Energy industries are in quest of high performance devices for developing future technologies to circumvent the needs of global consumers. The global thirst for nanoscale innovations has boosted the research in multifunctional materials for high efficiency devices with two-dimensional (2D) materials for future technologies. Aiming at the future trend of exploring the fascinating 2D materials, my research was involved in the synthesis of novel 2D materials by a CVD method and their characterizations, device fabrication, and applications in electronics and energy-based systems. This research focuses on the (1) phase-engineered large-area MoxW1-xTe2 ultra-thin films exhibiting room-temperature magnetoresistance, (2) MoxW1-xTe2 naowhiskers as a highly efficient counter electrode for dye sensitized solar cells (DSSCs), and (3) ambipolar rhenium diselenide (ReSe2) single crystalline domains for the fabrication of single-component near infra-red (NIR) light emitting transistors (LET).
Highly stable ultrathin films of large unsaturated room-temperature magnetoresistance (MR) are essential for the next-generation real-time magnetoelectric devices. A large-area, transfer-free, highly crystalline, and phase-engineered ultrathin film of Td-Mo0.27W0.71Te2.02 or 2H- & Td-Mo0.22W0.89Te1.89 on a hexagonal boron nitride (h-BN) substrate was synthesized with a CVD method. The Td-Mo0.27W0.71Te2.02 with average mobility of 725 cm2V-1s-1 possesses non-saturating MR of 18 % at 5 K and 11 % at room temperature. The weak localization effect was evidenced unprecedentedly by the Te-deficient 2H- & Td-Mo0.22W0.89Te1.89 thin film with unusual co-existence of two crystal phases, which exhibit a suppressed MR caused by the recurring inelastic scattering with a reduced phase coherence length. This work explores the production of phase-engineered large-area Weyl semi-metallic 2D materials for the realization of magnetoelectrics in the near future.
Novel polymorphic MoxW1-xTe2-based counter electrodes possess high carrier mobility, phase-dependent lattice distortion, and surface charge density wave to boost the charge-transfer kinetics and electrocatalytic activity in dye-sensitized solar cells (DSSCs). Here, we report the syntheses of stoichiometry-controlled binary and ternary MoxW1-xTe2 nanowhiskers directly on carbon cloth (CC), with a CVD technique. The photovoltaic parameter analysis manifests that MoxW1-xTe2/CCs are more stable than a standard Pt/CC in the I^-/I_3^- electrolyte. A 1T’- & Td-Mo0.66W0.32Te2.02/CC-based DSSC possesses lower charge-transfer resistance (0.62 Ω cm2) and an efficiency of 9.40%. Notably, MoxW1-xTe2 nanowhiskers act as an electron expressway by shortening the path of carrier transportation in the axial direction from a counter electrode to electrolytic ions to enhance the reaction kinetics in DSSCs. This work demonstrates that the nanowhiskers-structured 1T’- & Td-Mo0.66W0.32Te2.02/CC with high carrier mobility and robust surface states can serve as a highly efficient counter electrode in DSSCs to replace the conventional Pt counter electrode for electrocatalytic applications.
Near-infrared emitting devices are ideal for non-contact medical diagnosis and fast data communication technologies. High quality ReSe2 samples possessing superior anisotropic single crystalline nature with perfect stoichiometry were synthesized by atmospheric chemical vapor deposition technique. The precise work function matched asymmetric contact electrode engineered architecture demonstrated low turn on current and perfectly ambipolar characteristics comprising symmetric high mobility electron and hole population with Fermi level centered nearly at middle of the band gap. Ambient condition NIR EL has been unprecedentedly observed in frequency modulated pulsed injected ReSe2 devices. TThe bias-dependent, distance-dependent and wavelength-dependent measurements have quantitatively evidenced the highly stable NIR EL from ReSe2. The polarization-dependent double lobe emission feature manifests the inherent anisotropic in-plane polarization of ReSe2 excitonic features. This study reveals the potential of 2D material based NIR-LEDs as a promising pathway for ultrathin scalable data communication electronics in the future.
REFERENCES
(1) Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D Materials and van Der Waals Heterostructures. Science 2016, 353, 6298.
(2) Zeng, M.; Xiao, Y.; Liu, J.; Yang, K.; Fu, L. Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews 2018, 118 (13), 6236–6296.
(3) Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications. Materials Today 2017, 20 (3), 116–130.
(4) Parvez, K. Two-Dimensional Nanomaterials: Crystal Structure and Synthesis; Elsevier Inc., 2019.
(5) Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z. Recent Developments in Emerging Two-Dimensional Materials and Their Applications. Journal of Materials Chemistry C 2020, 8 (2), 387–440.
(6) Chhowalla, M.; Jena, D.; Zhang, H. Two-Dimensional Semiconductors for Transistors. Nature Reviews Materials 2016, 1 (11), 1–15.
(7) Prescott, J. C8-A Perfect Match. Twist 2008, 13 (1), 42–43.
(8) Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nature 2013, 499 (7459), 419–425.
(9) Akinwande, D.; Petrone, N.; Hone, J. Two-Dimensional Flexible Nanoelectronics. Nature Communications 2014, 5.
(10) Kim, J. H.; Jeong, J. H.; Kim, N.; Joshi, R.; Lee, G. H. Mechanical Properties of Two-Dimensional Materials and Their Applications. Journal of Physics D: Applied Physics 2019, 52 (8).
(11) Zeng, H.; Cui, X. An Optical Spectroscopic Study on Two-Dimensional Group-VI Transition Metal Dichalcogenides. Chemical Society Reviews 2015, 44 (9), 2629–2642.
(12) Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y.; Mallouk, T. E.; Terrones, M. Transition Metal Dichalcogenides and beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research 2015, 48 (1), 56–64.
(13) Zhou, J.; Liu, F.; Lin, J.; Huang, X.; Xia, J.; Zhang, B.; Zeng, Q.; Wang, H.; Zhu, C.; Niu, L. Large-Area and High-Quality 2D Transition Metal Telluride. Advanced Materials 2017, 29 (3), 1–8.
(14) Yan, B.; Felser, C. Topological Materials: Weyl Semimetals. Annual Review of Condensed Matter Physics 2017, 8, 337–354.
(15) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature nanotechnology 2012, 7 (11), 699–712.
(16) Han, S. A.; Bhatia, R.; Kim, S.-W. Synthesis, Properties and Potential Applications of Two-Dimensional Transition Metal Dichalcogenides. Nano Convergence 2015, 2 (1), 17.
(17) Reyes-Retana, J. A.; Cervantes-Sodi, F. Spin-Orbital Effects in Metal-Dichalcogenide Semiconducting Monolayers. Scientific Reports 2016, 6, 1–10.
(18) Cao, T.; Wang, G.; Han, W.; Ye, H.; Zhu, C.; Shi, J.; Niu, Q.; Tan, P.; Wang, E.; Liu, B. Valley-Selective Circular Dichroism of Monolayer Molybdenum Disulphide. Nature Communications 2012, 3.
(19) Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F. Progress, Challenges, Andopportunities in Two-Dimensional Materials beyond Graphene. ACS Nano 2013, 7 (4), 2898–2926.
(20) Wang, L.; Gutiérrez-Lezama, I.; Barreteau, C.; Ubrig, N.; Giannini, E.; Morpurgo, A. F. Tuning Magnetotransport in a Compensated Semimetal at the Atomic Scale. Nature Communications 2015, 8892.
(21) Choi, Wonbdhary, N.; Han, G. H.; Park, O.; ChouJuhong; Akinwande, D.; Lee, Y. H. Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications. Materials Today 2017, 00 (00), 1–15.
(22) Weyl, H. A Remark on the Coupling of Gravitation and Electron. Physical Review 1950, 77 (5), 699–701.
(23) Weng, H.; Fang, C.; Fang, Z.; Andrei Bernevig, B.; Dai, X. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Physical Review X 2015, 5 (1), 1–10.
(24) Xu, S.-Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Zhang, C.; Sankar, R.; Huang, S.-M.; Lee, C.-C.; Chang, G.; Wang, B. Discovery of a Weyl Fermion Semimetal and Topological Fermi Arcs. 2015, 7, 1–9.
(25) Murakami, S. Phase Transition between the Quantum Spin Hall and Insulator Phases in 3D: Emergence of a Topological Gapless Phase. New Journal of Physics 2008, 10 (2), 029802.
(26) Grabow, N.; Siewert, S.; Sternberg, K.; Martin, H.; Schmitz, K. P. Simulation of Drug Release for the Development of Drug-Eluting Stents - Influence of Design and Manufacturing Parameters on Drug Release Kinetics. IFMBE Proceedings 2009, 25 (8), 148–149.
(27) Wang, Z.; Weng, H.; Wu, Q.; Dai, X.; Fang, Z. Three-Dimensional Dirac Semimetal and Quantum Transport in Cd3As2. Physical Review B - Condensed Matter and Materials Physics 2013, 88 (12), 1–6.
(28) Soluyanov, A. A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B. A. Type-II Weyl Semimetals. Nature 2015, 527 (7579), 495–498.
(29) Sun, Y.; Wu, S. C.; Ali, M. N.; Felser, C.; Yan, B. Prediction of Weyl Semimetal in Orthorhombic MoTe2. Physical Review B - Condensed Matter and Materials Physics 2015, 92 (16), 1–7.
(30) Wan, X.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y. Topological Semimetal and Fermi-Arc Surface States in the Electronic Structure of Pyrochlore Iridates. Physical Review B - Condensed Matter and Materials Physics 2011, 83 (20), 1–9.
(31) Zhou, J.; Liu, F.; Lin, J.; Huang, X.; Xia, J.; Zhang, B.; Chang, R.; Hsu, C.; Wu, D.; Jeng, H.Large-Area and High-Quality 2D Transition Metal Telluride.
(32) Oliver, S. M.; Beams, R.; Krylyuk, S.; Kalish, I.; Singh, A. K.; Bruma, A.; Tavazza, F.; Joshi, J.; Stone, I. R.; Stranick, S. J.; The Structural Phases and Vibrational Properties of Mo1-XWxTe2 Alloys. 2D Materials 2017, 4 (4).
(33) Ma, X.; Guo, P.; Yi, C.; Yu, Q.; Zhang, A.; Ji, J.; Tian, Y.; Jin, F.; Wang, Y.; Liu, K.; et al. Raman Scattering in the Transition-Metal Dichalcogenides of 1T′−MoTe2, Td−MoTe2, and Td−WTe2. Physical Review B. 2016, p 214105.
(34) Soluyanov, A. A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B. A. Type-II Weyl Semimetals. 2015, No. 1, 1–12.
(35) Deng, K.; Wan, G.; Deng, P.; Zhang, K.; Ding, S.; Wang, E.; Yan, M.; Huang, H.; Zhang, H.; Xu, Z.; Experimental Observation of Topological Fermi Arcs in Type-II Weyl Semimetal MoTe2. Nature Physics 2016, 12 (12), 1105–1110.
(36) Jana, M. K.; Singh, A.; Late, D. J.; Rajamathi, C. R.; Biswas, K.; Felser, C.; Waghmare, U. V; Rao, C. N. R. A Combined Experimental and Theoretical Study of the Structural, Electronic and Vibrational Properties of Bulk and Few-Layer Td-WTe2. Journal of Physics: Condensed Matter 2015, 27 (28), 285401.
(37) Sun, Y.; Wang, R.; Liu, K. Substrate Induced Changes in Atomically Thin 2-Dimensional Semiconductors: Fundamentals, Engineering, and Applications. Applied Physics Reviews 2017, 4 (1).
(38) Deng, K.; Wan, G.; Deng, P.; Zhang, K.; Ding, S.; Wang, E.; Yan, M.; Huang, H.; Zhang, H.; Xu, Z.; et al. Experimental Observation of Topological Fermi Arcs in Type-II Weyl Semimetal MoTe2. Nature Physics 2016, 1, 1–15.
(39) Jana, M. K.; Singh, A.; Late, D. J.; Rajamathi, C. R.; Biswas, K.; Felser, C.; Waghmare, U. V; Rao, C. N. R. A Combined Experimental and Theoretical Study of the Structural, Electronic and Vibrational Properties of Bulk and Few-Layer Td-WTe2. Journal of Physics: Condensed Matter 2015, 27 (28), 285401.
(40) Zhang, E.; Chen, R.; Huang, C.; Yu, J.; Zhang, K.; Wang, W.; Liu, S.; Ling, J.; Wan, X.; Lu, H. Z.; et al. Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2. Nano Letters 2017, 17 (2), 878–885.
(41) Chang, T. R.; Xu, S. Y.; Chang, G.; Lee, C. C.; Huang, S. M.; Wang, B. K.; Bian, G.; Zheng, H.; Sanchez, D. S.; Belopolski, I. Prediction of an Arc-Tunable Weyl Fermion Metallic State in MoxW1-XTe2. Nature Communications 2016, 7, 1–9.
(42) Lv, H. Y.; Lu, W. J.; Shao, D. F.; Liu, Y.; Tan, S. G.; Sun, Y. P. Perfect Charge Compensation in WTe2 for the Extraordinary Magnetoresistance: From Bulk to Monolayer. Epl 2015, 110 (3).
(43) Liu, X.; Zhang, Z.; Cai, C.; Tian, S.; Kushwaha, S.; Lu, H.; Taniguchi, T.; Watanabe, K.; Cava, R. J.; Jia, S. Gate Tunable Magneto-Resistance of Ultra-Thin WTe2 Devices. arXiv 2017.
(44) Lu, H. Z.; Shen, S. Q. T Quantum Transport in Topological Semimetals under Magnetic Fields. Frontiers of Physics 2017, 12 (3).
(45) Belopolski, I.; Sanchez, D. S.; Ishida, Y.; Pan, X.; Yu, P.; Xu, S. Y.; Chang, G.; Chang, T. R.; Zheng, H.; Alidoust, N. Discovery of a New Type of Topological Weyl Fermion Semimetal State in MoxW1-XTe2. Nature Communications 2016, 7, 1–9.
(46) Rhodes, D.; Chenet, D. A.; Janicek, B. E.; Nyby, C.; Lin, Y.; Jin, W.; Edelberg, D.; Mannebach, E.; Finney, N.; Antony, A. Engineering the Structural and Electronic Phases of MoTe2 through W Substitution. Nano Letters 2017, 17 (3), 1616–1622.
(47) Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two Dimensional Hexagonal Boron Nitride (2D-HBN): Synthesis, Properties and Applications. Journal of Materials Chemistry C 2017, 5 (46), 11992–12022.
(48) Pande, G.; Siao, J. Y.; Chen, W. L.; Lee, C. J.; Sankar, R.; Chang, Y. M.; Chen, C. D.; Chang, W. H.; Chou, F. C.; Lin, M. T. Ultralow Schottky Barriers in Hexagonal Boron Nitride-Encapsulated Monolayer WSe2 Tunnel Field-Effect Transistors. ACS Applied Materials and Interfaces 2020, 12 (16), 18667–18673.
(49) Zhu, J.; Kang, J.; Kang, J.; Jariwala, D.; Wood, J. D.; Seo, J. W. T.; Chen, K. S.; Marks, T. J.; Hersam, M. C. Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets. Nano Letters 2015, 15 (10), 7029–7036.
(50) Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Leroy, B. J. Scanning Tunnelling Microscopy and Spectroscopy of Ultra-Flat Graphene on Hexagonal Boron Nitride. Nature Materials 2011, 10 (4), 282–285.
(51) Gil, B.; Cassabois, G.; Cusco, R.; Fugallo, G.; Artus, L. Boron Nitride for Excitonics, Nano Photonics, and Quantum Technologies. Nanophotonics 2020, 9 (11), 3483–3504.
(52) Kang, J.; Zhang, L.; Wei, S. H. A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors. Journal of Physical Chemistry Letters 2016, 7 (4), 597–602.
(53) Li, J.; Liu, Y.; Liu, C.; Huang, W.; Zhang, Y.; Wang, M.; Hou, Z.; Wang, X.; Jin, M.; Zhou, G. Enhanced Charge Transport in ReSe2-Based 2D/3D Electrodes for Efficient Hydrogen Evolution Reaction. Chemical Communications 2019, 56 (2), 305–308.
(54) Hart, L. S.; Webb, J. L.; Dale, S.; Bending, S. J.; Mucha-Kruczynski, M.; Wolverson, D.; Chen, C.; Avila, J.; Asensio, M. C. Electronic Bandstructure and van Der Waals Coupling of ReSe2 Revealed by High-Resolution Angle-Resolved Photoemission Spectroscopy. Scientific Reports 2017, 7 (1), 1–9.
(55) Yang, S.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J. B.; Li, S. S.; Li, J.; Wei, S. H. Layer-Dependent Electrical and Optoelectronic Responses of ReSe2 Nanosheet Transistors. Nanoscale 2014, 6 (13), 7226–7231.
(56) Zhang, E.; Wang, P.; Li, Z.; Wang, H.; Song, C.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K.; Lu, S. Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. ACS Nano 2016, 10 (8), 8067–8077.
(57) Jariwala, B.; Thamizhavel, A.; Bhattacharya, A. ReSe2: A Reassessment of Crystal Structure and Thermal Analysis. Journal of Physics D: Applied Physics 2017, 50 (4).
(58) Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B. A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A. Synthesis and Characterization of ReS2 and ReSe2 Layered Chalcogenide Single Crystals. Chemistry of Materials 2016, 28 (10), 3352–3359.
(59) Bürgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H. J.; Winnewisser, C. High-Mobility Ambipolar near-Infrared Light-Emitting Polymer Field-Effect Transistors. Advanced Materials 2008, 20 (11), 2217–2224.
(60) Dujovny, M.; Morency, E.; Ibe, O.; Sosa, P.; Cremaschi, F. Contributions of Near Infrared Light Emitting Diode in Neurosurgery. Insights in Neurosurgery 2016, 01 (01), 1–8.
(61) Kang, B.; Kim, Y.; Cho, J. H.; Lee, C. Ambipolar Transport Based on CVD-Synthesized ReSe2. 2D Materials 2017, 4 (2).
(62) Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G. Synthesis, Assembly and Applications of Semiconductor Nanomembranes. Nature 2011, 477 (7362), 45–53.
(63) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nature Nanotechnology 2011, 6 (3), 147–150.
(64) Shi, Y.; Hua, C.; Li, B.; Fang, X.; Yao, C.; Zhang, Y.; Hu, Y. S.; Wang, Z.; Chen, L.; Zhao, D. Highly Ordered Mesoporous Crystalline MoSe2 Material with Efficient Visible-Light-Driven Photocatalytic Activity and Enhanced Lithium Storage Performance. Advanced Functional Materials 2013, 23 (14), 1832–1838.
(65) Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical Transport Properties of Single-Layer WS2. ACS Nano 2014, 8 (8), 8174–8181.
(66) Lin, Y. F.; Xu, Y.; Wang, S. T.; Li, S. L.; Yamamoto, M.; Aparecido-Ferreira, A.; Li, W.; Sun, H.; Nakaharai, S.; Jian, W. Bin. Ambipolar MoTe2 Transistors and Their Applications in Logic Circuits. Advanced Materials 2014, 26 (20), 3263–3269.
(67) Cai, Z.; Liu, B.; Zou, X.; Cheng, H. M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chemical Reviews 2018, 118 (13), 6091–6133.
(68) Kern, W.; Vossen, J. L. CVD5-Thin Film Processes II; Knovel Library; Elsevier Science, 2012.
(69) Liu, B.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y.; Zhou, C. Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. ACS Nano 2015, 9 (6), 6119–6127.
(70) He, Y.; Sobhani, A.; Lei, S.; Zhang, Z.; Gong, Y.; Jin, Z.; Zhou, W.; Yang, Y.; Zhang, Y.; Wang, X. Layer Engineering of 2D Semiconductor Junctions. Advanced Materials 2016, 28 (25), 5126–5132.
(71) Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R.; Feng, S.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers. ACS Nano 2013, 7 (6), 5235–5242.
(72) Xia, J.; Zhu, D.; Wang, L.; Huang, B.; Huang, X.; Meng, X. M. Large-Scale Growth of Two-Dimensional SnS2 Crystals Driven by Screw Dislocations and Application to Photodetectors. Advanced Functional Materials 2015, 25 (27), 4255–4261.
(73) Zhang, Y.; Ji, Q.; Wen, J.; Li, J.; Li, C.; Shi, J.; Zhou, X.; Shi, K.; Chen, H.; Li, Y.; et al. Monolayer MoS2 Dendrites on a Symmetry-Disparate SrTiO3 (001) Substrate: Formation Mechanism and Interface Interaction. Advanced Functional Materials 2016, 26 (19), 3299–3305.
(74) Jin, S.; Bierman, M. J.; Morin, S. A. A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes. Journal of Physical Chemistry Letters 2010, 1 (9), 1472–1480.
(75) Ly, T. H.; Zhao, J.; Kim, H.; Han, G. H.; Nam, H.; Lee, Y. H. Vertically Conductive MoS2 Spiral Pyramid. Advanced Materials 2016, 28 (35), 7723–7728.
(76) Yan, Z.; Peng, Z.; Tour, J. M. Chemical Vapor Deposition of Graphene Single Crystals. Accounts of Chemical Research 2014, 47 (4), 1327–1337.
(77) Gao, Y.; Liu, Z.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z.; Ma, X. L.; Peng, L. M. Large-Area Synthesis of High-Quality and Uniform Monolayer WS2 on Reusable Au Foils. Nature Communications 2015, 6, 1–10.
(78) Einax, M.; Dieterich, W.; Maass, P. Colloquium: Cluster Growth on Surfaces: Densities, Size Distributions, and Morphologies. Reviews of Modern Physics 2013, 85 (3), 921–939.
(79) Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T Phase MoS2 Nanosheets as Supercapacitor Electrode Materials. Nature Nanotechnology 2015, 10 (4), 313–318.
(80) Han, H. V.; Lu, A. Y.; Lu, L. S.; Huang, J. K.; Li, H.; Hsu, C. L.; Lin, Y. C.; Chiu, M. H.; Suenaga, K.; Chu, C. W. Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment. ACS Nano 2016, 10 (1), 1454–1461.
(81) Lu, J.; Carvalho, A.; Chan, X. K.; Liu, H.; Liu, B.; Tok, E. S.; Loh, K. P.; Castro Neto, A. H.; Sow, C. H. Atomic Healing of Defects in Transition Metal Dichalcogenides. Nano Letters 2015, 15 (5), 3524–3532.
(82) Kumar, C. S. S. R. Raman Spectroscopy for Nanomaterials Characterization 2012, 9783642206.
(83) C. Richard Brundle and Charles A. Evans, J. Encyclopedia of Materials Characterization. BMC Public Health 2017, 5 (1), 1–8.
(84) B.K. Agarwal. Xray Spectroscopy; 2017; Vol. 5.
(85) Science, A. CasaXPS User Guide. 2001, 1–163.
(86) Nikam, R. D.; Sonawane, P. A.; Sankar, R.; Chen, Y. T. Epitaxial Growth of Vertically Stacked p-MoS2/n-MoS2 Heterostructures by Chemical Vapor Deposition for Light Emitting Devices. Nano Energy 2017, 32 (January), 454–462.
(87) Jonathan, N. Ultraviolet Photoelectron Spectroscopy. Nature 1977, 268 (5622), 774–774.
(88) Inkson, B. J. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization; Elsevier Ltd, 2016.
(89) Kogure, T. Electron Microscopy, 2nd ed.; Elsevier Ltd., 2013; Vol. 5.
(90) Bijvoet, J. M.; Bernal, J. D.; Patterson, A. L. Forty Years of X-Ray Diffraction. Nature 1952, 169 (4310), 949–950.
(91) Scherrer, P. Bestimmung Der Grosse Und Der Inneren Struktur von Kolloidterilchen Mittels Rontgestrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918, No. 26, 98–100.
(92) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education 2018, 95 (2), 197–206.
(93) Nicholson, R. S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Analytical Chemistry 1965, 37 (11), 1351–1355.
(94) Zheng, D.; Ye, M.; Wen, X.; Zhang, N.; Lin, C. Electrochemical Methods for the Characterization and Interfacial Study of Dye-Sensitized Solar Cell. Science Bulletin 2015, 60 (9), 850–863.
(95) Hwang, I.; Yong, K. Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ChemElectroChem 2015, 2 (5), 634–653.
(96) Yang, X.; Yanagida, M.; Han, L. Reliable Evaluation of Dye-Sensitized Solar Cells. Energy and Environmental Science 2013, 6 (1), 54–66.
(97) Mora-Seró, I.; Giménez, S.; Fabregat-Santiago, F.; Gómez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Recombination in Quantum Dot Sensitized Solar Cells. Accounts of Chemical Research 2009, 42 (11), 1848–1857.
(98) Liu, W.; Kou, D.; Cai, M.; Hu, L.; Dai, S. Impedance Characteristics of Dye Sensitized Solar Cells. Progress in Chemistry 2012, 24 (5), 722–736.
(99) Huang, Z.; Natu, G.; Ji, Z.; Hasin, P.; Wu, Y. P-Type Dye-Sensitized NiO Solar Cells: A Study by Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry C 2011, 115 (50), 25109–25114.
(100) Lei, C.; Markoulidis, F.; Ashitaka, Z.; Lekakou, C. Reduction of Porous Carbon/Al Contact Resistance for an Electric Double-Layer Capacitor (EDLC). Electrochimica Acta 2013, 92, 183–187.
(101) Lu, H. Z.; Zhang, S. B.; Shen, S. Q. High-Field Magnetoconductivity of Topological Semimetals with Short-Range Potential. Physical Review B - Condensed Matter and Materials Physics 2015, 92 (4), 1–10.
(102) Rhodes, D.; Chenet, D. A.; Janicek, B. E.; Nyby, C.; Lin, Y.; Jin, W.; Edelberg, D.; Mannebach, E.; Finney, N.; Antony, A. Engineering the Structural and Electronic Phases of MoTe2 through W Substitution. Nano Letters 2017, 17 (3), 1616–1622.
(103) Yang, H.; Gao, F.; Dai, M.; Jia, D.; Zhou, Y.; Hu, P. Recent Advances in Preparation, Properties and Device Applications of Twodimensional h-BN and Its Vertical Heterostructures. Journal of Semiconductors 2017, 38 (3).
(104) Kim, S. M.; Hsu, A.; Park, M. H.; Chae, S. H.; Yun, S. J.; Lee, J. S.; Cho, D. H.; Fang, W.; Lee, C.; Palacios, T. Synthesis of Large-Area Multilayer Hexagonal Boron Nitride for High Material Performance. Nature Communications 2015, 6.
(105) Tay, R. Y.; Tsang, S. H.; Loeblein, M.; Chow, W. L.; Loh, G. C.; Toh, J. W.; Ang, S. L.; Teo, E. H. T. Direct Growth of Nanocrystalline Hexagonal Boron Nitride Films on Dielectric Substrates. Applied Physics Letters 2015, 106 (10), 1–6.
(106) Teii, K.; Kawakami, S.; Matsumoto, S. Superhydrophilic Cubic Boron Nitride Films. RSC Advances 2016, 6 (91), 87905–87909.
(107) Zhang, W. J.; Jiang, X.; Matsumoto, S. High-Quality, Faceted Cubic Boron Nitride Films Grown by Chemical Vapor Deposition. Applied Physics Letters 2001, 79 (27), 4530–4532.
(108) Bunby, F. P.; Wentorf, R. H. Direct Transformation of Hexagonal Boron Nitride to Denser Forms. The Journal of Chemical Physics 1963, 38 (5), 1144–1149.
(109) Wang, X.; Hossain, M.; Wei, Z.; Xie, L. Growth of Two-Dimensional Materials on Hexagonal Boron Nitride (h-BN). Nanotechnology 2019, 30 (3).
(110) Werninghaus, T.; Friedrich, M.; Hahn, J.; Richter, F.; Zahn, D. R. T. Raman Spectroscopy Investigation of Cubic Boron Nitride Single Crystals and Layers on Si(100). Diamond and Related Materials 1997, 6 (5–7), 612–616.
(111) Behura, S.; Nguyen, P.; Che, S.; Debbarma, R.; Berry, V. Large-Area, Transfer-Free, Oxide-Assisted Synthesis of Hexagonal Boron Nitride Films and Their Heterostructures with MoS2 and WS2. Journal of the American Chemical Society 2015, 137 (40), 13060–13065.
(112) Te, K. Von; Beck, J. Synthese Und Kristallstruktur von Te4+(WC16 )2. 1990, 6, 30–33.
(113) Binnewies, M.; Glaum, R.; Schmidt, M.; Schmidt, P. Chemical Vapor Transport Reactions - A Historical Review; Walter de Gruyter GmbH & Co. Berlin/Boston, 2013; Vol. 639.
(114) Lassner, E.; Schubert, W.-D. Index. Tungsten Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds Erik Lassner and Wolf-Dieter Schubert; Vol. XXI, 422, 1999.
(115) Xiv, V.; Wold, A.; Ruff, J. K. Inorganic Synthesis; Mc Craw-Hill Book Company, Vol. XV, 1, 1974.
(116) Bosi, M. Growth and Synthesis of Mono and Few-Layers Transition Metal Dichalcogenides by Vapour Techniques: A Review. RSC Advances 2015, 5 (92), 75500–75518.
(117) Zaitsev, A. A.; Korotkov, N. A.; Lazarev, E. M. Oxidation of Molybdenum and Molybdenum-Tungsten Alloys. In Metal Science and Heat Treatment 1976, 18, 873–876.
(118) Bernède, J.; Amory, C.; Assmann, L.; Spiesser, M. X-Ray Photoelectron Spectroscopy Study of MoTe2 Single Crystals and Thin Films. Applied Surface Science 2003, 219, 238–248.
(119) Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W.; Ouyang, F.; Lee, Y. H.; Ueno, K.; Saito, R.; Palacios, T. Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2. Journal of the American Chemical Society 2015, 137 (37), 11892–11895.
(120) Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. Bandgap Opening in Few-Layered Monoclinic MoTe2. Nature Physics 2015, 11 (6), 482–486.
(121) Yu, P.; Lin, J.; Sun, L.; Le, Q. L.; Yu, X.; Gao, G.; Hsu, C.-H.; Wu, D.; Chang, T.-R.; Zeng, Q. Metal-Semiconductor Phase-Transition in WSe2(1-x)Te2x Monolayer. Advanced Materials 2017, 29 (4), 1603991.
(122) Lv, Y.-Y.; Cao, L.; Li, X.; Zhang, B.-B.; Wang, K.; Bin Pang; Ma, L.; Lin, D.; Yao, S.-H.; Zhou, J. Composition and Temperature-Dependent Phase Transition in Miscible Mo1−xWxTe2 Single Crystals. Scientific Reports 2017, 7, 44587.
(123) Gouadec, G.; Colomban, P. Raman Spectroscopy of Nanomaterials: How Spectra Relate to Disorder, Particle Size and Mechanical Properties. Progress in Crystal Growth and Characterization of Materials 2007, 53 (1), 1–56.
(124) Lee, C.; Yan, H.; Brus, L.; Heinz, T.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single-and Few-Layer MoS2. ACS nano 2010, 4 (5), 2695–2700.
(125) Parayanthal, P.; Pollak, F. H. JS18-Raman Scattering in Alloy Semiconductors: “Spatial Correlation” Model. Physical Review Letters 1984, 52 (20), 1822–1825.
(126) Beams, R.; Cancado, L. G.; Krylyuk, S.; Kalish, I.; Kalanyan, B.; Davydov, A. V; Stranick, S. J. Resolved Second Harmonic Generation and Raman Scattering. Manuscript 2016, 4 (10), 1–28.
(127) Kim, Y.; Jhon, Y. I.; Park, J.; Kim, J. H.; Lee, S.; Jhon, Y. M. Anomalous Raman Scattering and Lattice Dynamics in Mono- and Few-Layer WTe2. Nanoscale 2016, 8 (4), 2309–2316.
(128) Yamamoto, M.; Wang, S. T.; Ni, M.; Lin, Y. F.; Li, S. L.; Aikawa, S.; Jian, W. Bin; Ueno, K.; Wakabayashi, K.; Tsukagoshi, K. Strong Enhancement of Raman Scattering from a Bulk-Inactive Vibrational Mode in Few-Layer MoTe2. ACS Nano 2014, 8 (4), 3895–3903.
(129) Goldstein, T.; Chen, S. Y.; Tong, J.; Xiao, D.; Ramasubramaniam, A.; Yan, J. Raman Scattering and Anomalous Stokes-Anti-Stokes Ratio in MoTe2 Atomic Layers. Scientific Reports 2016, 6, 28024.
(130) Guo, H.; Yang, T.; Yamamoto, M.; Zhou, L.; Ishikawa, R.; Ueno, K.; Tsukagoshi, K.; Zhang, Z.; Dresselhaus, M. S.; Saito, R. Double Resonance Raman Modes in Monolayer and Few-Layer MoTe2. Physical Review B - Condensed Matter and Materials Physics 2015, 91 (20), 1–8.
(131) Cao, Y.; Sheremetyeva, N.; Liang, L.; Yuan, H.; Zhong, T.; Meunier, V. Anomalous Vibrational Modes in Few Layer WTe2 Revealed by Polarized Raman Scattering and First- Principles Calculations, 2017.
(132) Jiang, Y. C.; Gao, J.; Wang, L. Raman Fingerprint for Semi-Metal WTe2 Evolving from Bulk to Monolayer. Scientific Reports 2016, 6, 19624.
(133) Hu, J.; Liu, X.; Yue, C. L.; Liu, J. Y.; Zhu, H. W.; He, J. B.; Wei, J.; Mao, Z. Q.; Antipina, L. Y.; Popov, Z. I. Enhanced Electron Coherence in Atomically Thin Nb3 SiTe6. Nature Physics 2015, 11 (6), 471–476.
(134) Vora, P. M.; Gopu, P.; Rosario-Canales, M.; Pérez, C. R.; Gogotsi, Y.; Santiago-Avilés, J. J.; Kikkawa, J. M. Correlating Magnetotransport and Diamagnetism of Sp2-Bonded Carbon Networks through the Metal-Insulator Transition. Physical Review B - Condensed Matter and Materials Physics 2011, 84 (15), 1–8.
(135) Wang, L.; Gutiérrez-Lezama, I.; Barreteau, C.; Ubrig, N.; Giannini, E.; Morpurgo, A. F. Tuning Magnetotransport in a Compensated Semimetal at the Atomic Scale. Nature Communications 2015, 6, 1–7.
(136) Lv, Y. Y.; Zhang, B. Bin; Li, X.; Yao, S. H.; Chen, Y. B.; Zhou, J.; Zhang, S. T.; Lu, M. H.; Chen, Y. F. Extremely Large and Significantly Anisotropic Magnetoresistance in ZrSiS Single Crystals. Applied Physics Letters 2016, 108 (24).
(137) Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P. Large, Non-Saturating Magnetoresistance in WTe2. Nature 2014, 514, 205–208.
(138) Singha, R.; Pariari, A. K.; Satpati, B.; Mandal, P. Large Nonsaturating Magnetoresistance and Signature of Nondegenerate Dirac Nodes in ZrSiS. Proceedings of the National Academy of Sciences of the United States of America 2017, 114 (10), 2468–2473.
(139) Champion, J. A.; Some Properties of (Mo, W) (Se, Te)2. J. Appl. Phys. 1965, 16, 1035.
(140) Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4 (5), 2695–2700.
(141) Kawaji S., Kawaguchi Y. Negative magnetoresistance and Anderson localization in Si-MOSFETs and other 2D systems in semiconductor interfaces. In: Landwehr G. (eds) Application of High Magnetic Fields in Semiconductor Physics. Lecture Notes in Physics, Springer, Berlin, Heidelberg. 177, 1983
(142) Koga, T.; Sekine, Y. Electron Spin Rotation and Quantitative Determination of Spin-Orbit Coefficients. NTT Technical Review 2012, 10 (9).
(143) Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; International series of monographs on physics; Clarendon Press, 1960.
(144) Luo, Y.; Li, H.; Dai, Y. M.; Miao, H.; Shi, Y. G.; Ding, H.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Thompson, J. D. Hall Effect in the Extremely Large Magnetoresistance Semimetal WTe2. Applied Physics Letters 2015, 107 (18).
(145) Flynn, S., Ali, M. N. & Cava, R. J. The effect of dopants on the magnetoresistance of WTe2. Preprint at http://arxiv.org/abs/1506.07069 (2015).
(146) Gao, M.; Zhang, M.; Niu, W.; Chen, Y.; Gu, M.; Wang, H.; Song, F.; Wang, P.; Yan, S.; Wang, F. Tuning the Transport Behavior of Centimeter-Scale WTe2 Ultrathin Films Fabricated by Pulsed Laser Deposition. Applied Physics Letters. 2017, 111, 031906.
(147) Li, H.; He, H.; Lu, H. Z.; Zhang, H.; Liu, H.; Ma, R.; Fan, Z.; Shen, S. Q.; Wang, J. Negative Magnetoresistance in Dirac Semimetal Cd3As2. Nature Commun. 2016, 7, 1–7.
(148) Lu, H.-Z.; Shen, S.-Q. Weak Localization and Weak Anti-Localization in Topological Insulators. Spintronics. 2014, 9167, 91672E.
(149) Hikami, S.; Larkin, A. I.; Nagaoka, Y. Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System. Progress of Theoretical Physics 1980, 63 (2), 707–710.
(150) Aleiner, I. L.; Altshuler, B. L.; Gershenson, M. E. Interaction Effects and Phase Relaxation in Disordered Systems. Waves in Random Media, 1999, 9:2, 201-239.
(151) Bao, L.; He, L.; Meyer, N.; Kou, X.; Zhang, P.; Chen, Z. G.; Fedorov, A. V.; Zou, J.; Riedemann, T. M.; Lograsso, T. A. Weak Anti-Localization and Quantum Oscillations of Surface States in Topological Insulator Bi2Se2Te. Scientific Reports 2012, 2, 726.
(152) Shi, Y.; Gillgren, N.; Espiritu, T.; Tran, S.; Yang, J.; Watanabe, K.; Taniguchi, T.; Lau, C. N. Weak Localization and Electron-Electron Interactions in Few Layer Black Phosphorus Devices. 2D Materials 2016, 3, 034003
(153) Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G. Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews 2015, 115 (5), 2136–2173.
(154) Hauch, A.; Georg, A. Diffusion in the Electrolyte and Charge-Transfer Reaction at the Platinum Electrode in Dye-Sensitized Solar Cells. Electrochimica Acta 2001, 46 (22), 3457–3466.
(155) Hecht, D. S.; Hu, L.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Advanced Materials 2011, 23 (13), 1482–1513.
(156) Qin, Q.; Zhang, R. A Novel Conical Structure of Polyaniline Nanotubes Synthesized on ITO-PET Conducting Substrate by Electrochemical Method. Electrochimica Acta 2013, 89, 726–731.
(157) Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-Phase Semicrystalline Microstructures Drive Exciton Dissociation in Neat Plastic Semiconductors. J. Mater. Chem. C 2015, 3 (207890), 10715–10722.
(158) Michael F. Toney, Jason N. Howard, Jocelyn Richer, Gary L. Borges, Joseph G. Gordon, Owen R. Melroy, David G. Wiesler, D. Y. & L. B. S. Nature 1994, 368, 444–446.
(159) Liu, I. P.; Hou, Y. C.; Li, C. W.; Lee, Y. L. Highly Electrocatalytic Counter Electrodes Based on Carbon Black for Cobalt(Iii)/(Ii)-Mediated Dye-Sensitized Solar Cells. Journal of Materials Chemistry A 2017, 5 (1), 240–249.
(160) Saranya, K.; Rameez, M.; Subramania, A. Developments in Conducting Polymer Based Counter Electrodes for Dye-Sensitized Solar Cells - An Overview. European Polymer Journal 2015, 66, 207–227.
(161) Levy, R. B.; Boudart, M. Platinum-like Behavior of Tungsten Carbide in Surface Catalysis. Science 1973, 181 (4099), 547–549.
(162) Yun, S.; Zhang, H.; Pu, H.; Chen, J.; Hagfeldt, A.; Ma, T. Metal Oxide/Carbide/Carbon Nanocomposites: In Situ Synthesis, Characterization, Calculation, and Their Application as an Efficient Counter Electrode Catalyst for Dye-Sensitized Solar Cells. Advanced Energy Materials 2013, 3 (11), 1407–1412.
(163) Abe, H.; Liu, J.; Ariga, K. Catalytic Nanoarchitectonics for Environmentally Compatible Energy Generation. Materials Today 2016, 19 (1), 12–18.
(164) Manikandan, M.; Tanabe, T.; Ramesh, G. V.; Kodiyath, R.; Ueda, S.; Sakuma, Y.; Homma, Y.; Dakshanamoorthy, A.; Ariga, K.; Abe, H. Tailoring the Surface-Oxygen Defects of a Tin Dioxide Support towards an Enhanced Electrocatalytic Performance of Platinum Nanoparticles. Physical Chemistry Chemical Physics 2016, 18 (8), 5932–5937.
(165) Low, T.; Chaves, A.; Caldwell, J. D.; Kumar, A.; Fang, N. X.; Avouris, P.; Heinz, T. F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in Layered Two-Dimensional Materials. Nature Materials 2017, 16 (2), 182–194.
(166) Li, B. L.; Setyawati, M. I.; Chen, L.; Xie, J.; Ariga, K.; Lim, C. T.; Garaj, S.; Leong, D. T. Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Applied Materials and Interfaces 2017, 9 (18), 15286–15296.
(167) Ji, Q.; Zhang, Y.; Zhang, Y.; Liu, Z. Chemical Vapour Deposition of Group-VIB Metal Dichalcogenide Monolayers: Engineered Substrates from Amorphous to Single Crystalline. Chem. Soc. Rev. 2015, 44 (9), 2587–2602.
(168) Duan, X.; Wang, C.; Pan, A.; Yu, R. Two-Dimensional Transition Metal Dichalcogenides as Atomically Thin Semiconductors: Opportunities and Challenges. Chemical Society Reviews 2015, 44 (24), 8859–8876.
(169) Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nature 2013, 499 (7459), 419–425.
(170) Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317 (5834), 100–102.
(171) Singh, N.; Schwingenschlögl, U. Extended Moment Formation in Monolayer WS2 Doped with 3d Transition-Metals. ACS Applied Materials and Interfaces 2016, 8 (36), 23886–23890.
(172) Li, H.; Liu, S.; Huang, S.; Zhang, Q.; Li, C.; Liu, X.; Meng, J.; Tian, Y. Metallic Impurities Induced Electronic Transport in WSe2: First-Principle Calculations. Chemical Physics Letters 2016, 658, 83–87.
(173) Wang, X.; Chen, Y.; Zheng, B.; Qi, F.; He, J.; Li, Q.; Li, P.; Zhang, W. Graphene-like WSe2 nanosheets for Efficient and Stable Hydrogen Evolution. Journal of Alloys and Compounds 2017, 691, 698–704.
(174) Pashigreva, A. V.; Kondratieva, E.; Bermejo-Deval, R.; Gutiérrez, O. Y.; Lercher, J. A. Methanol Thiolation over Al2O3 and WS2 catalysts Modified with Cesium. Journal of Catalysis 2017, 345, 308–318.
(175) Eftekhari, A.; Fan, Z. Ordered Mesoporous Carbon and Its Applications for Electrochemical Energy Storage and Conversion. Materials Chemistry Frontiers 2017, 1 (6), 1001–1027.
(176) Eftekhari, A. Ordered Mesoporous Materials for Lithium-Ion Batteries. Microporous and Mesoporous Materials 2017, 243, 355–369.
(177) Zou, M.; Zhang, J.; Zhu, H.; Du, M.; Wang, Q.; Zhang, M.; Zhang, X. A 3D Dendritic WSe2 Catalyst Grown on Carbon Nanofiber Mats for Efficient Hydrogen Evolution. Journal of Materials Chemistry A 2015, 3 (23), 12149–12153.
(178) Wang, H.; Kong, D.; Johanes, P.; Cha, J. J.; Zheng, G.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces. Nano Letters 2013, 13 (7), 3426–3433.
(179) Liang, T.; Gibson, Q.; Ali, M. N.; Liu, M.; Cava, R. J.; Ong, N. P. Ultrahigh Mobility and Giant Magnetoresistance in the Dirac Semimetal Cd3As2. Nature Materials 2015, 14 (3), 280–284.
(180) Shekhar, C.; Nayak, A. K.; Sun, Y.; Schmidt, M.; Nicklas, M.; Leermakers, I.; Zeitler, U.; Skourski, Y.; Wosnitza, J.; Liu, Z. Extremely Large Magnetoresistance and Ultrahigh Mobility in the Topological Weyl Semimetal Candidate NbP. Nature Physics 2015, 11 (8), 645–649.
(181) Kane, C. L. Colloquium : Topological Insulators Colloquium : Topological Insulators. Rev. Mod. Phys. 2014, 82, 3045–3067.
(182) Zhou, S.; Tang, R.; Yin, L. Slow-Photon-Effect-Induced Photoelectrical-Conversion Efficiency Enhancement for Carbon-Quantum-Dot-Sensitized Inorganic CsPbBr3 Inverse Opal Perovskite Solar Cells. Advanced Materials 2017, 29 (43), 1–9.
(183) Oliver, S. M.; Beams, R.; Krylyuk, S.; Kalish, I.; Singh, A. K.; Bruma, A.; Tavazza, F.; Joshi, J.; Stone, I. R.; Stranick, S. J. The Structural Phases and Vibrational Properties of Mo1-XWxTe2 Alloys. 2D Materials 2017, 4, 045008
(184) Jiang, J.; Liu, Z. K.; Sun, Y.; Yang, H. F.; Rajamathi, C. R.; Qi, Y. P.; Yang, L. X.; Chen, C.; Peng, H.; Hwang, C. C. Signature of Type-II Weyl Semimetal Phase in MoTe2. Nat Communications 2017, 8, 13973.
(185) Wang, C.; Zhang, Y.; Huang, J.; Nie, S.; Liu, G.; Liang, A.; Zhang, Y.; Shen, B.; Liu, J.; Hu, C. Observation of Fermi Arc and Its Connection with Bulk States in the Candidate Type-II Weyl Semimetal WTe2. Physical Review B 2016, 94 (24), 1–8.
(186) Tsai, C.; Chan, K.; Nørskov, J. K.; Abild-Pedersen, F. Theoretical Insights into the Hydrogen Evolution Activity of Layered Transition Metal Dichalcogenides. Surface Science 2015, 640, 133–140.
(187) Ambrosi, A.; Sofer, Z.; Pumera, M. 2H → 1T Phase Transition and Hydrogen Evolution Activity of MoS2, MoSe2, WS2 and WSe2 Strongly Depends on the MX2 Composition. Chemical Communications 2015, 51 (40), 8450–8453.
(188) Rajamathi, C. R.; Gupta, U.; Kumar, N.; Yang, H.; Sun, Y.; Süß, V.; Shekhar, C.; Schmidt, M.; Blumtritt, H.; Werner, P. Weyl Semimetals as Hydrogen Evolution Catalysts. Advanced Materials 2017, 29 (19), 1–6.
(189) Seok, J.; Lee, J. H.; Cho, S.; Ji, B.; Kim, H. W.; Kwon, M.; Kim, D.; Kim, Y. M.; Oh, S. H.; Kim, S. W. Active Hydrogen Evolution through Lattice Distortion in Metallic MoTe2. 2D Materials 2017, 4 (2).
(190) Luxa, J.; Vosecký, P.; Mazánek, V.; Sedmidubský, D.; Pumera, M.; Lazar, P.; Sofer, Z. Layered Transition-Metal Ditellurides in Electrocatalytic Applications - Contrasting Properties. ACS Catalysis 2017, 7 (9), 5706–5716.
(191) Li, J.; Hong, M.; Sun, L.; Zhang, W.; Shu, H.; Chang, H. Enhanced Electrocatalytic Hydrogen Evolution from Large-Scale, Facile-Prepared, Highly Crystalline WTe2 Nanoribbons with Weyl Semimetallic Phase. ACS Applied Materials and Interfaces 2018, 10 (1), 458–467.
(192) Hussain, S.; Patil, S. A.; Vikraman, D.; Mengal, N.; Liu, H.; Song, W.; An, K.-S.; Jeong, S. H.; Kim, H.-S.; Jung, J. Large Area Growth of MoTe2 Films as High Performance Counter Electrodes for Dye-Sensitized Solar Cells. Scientific Reports 2018, 8 (1), 29.
(193) Taylor S.R. Abundance of Chemical Elements in the Continental Crust : A New Table. Geochimica et Cosmochimica Acta 1964, 28, 1273–1285.
(194) McCreary, A.; Berkdemir, A.; Wang, J.; Nguyen, M. A.; Elías, A. L.; Perea-López, N.; Fujisawa, K.; Kabius, B.; Carozo, V.; Cullen, D. A. Distinct Photoluminescence and Raman Spectroscopy Signatures for Identifying Highly Crystalline WS2 Monolayers Produced by Different Growth Methods. Journal of Materials Research 2016, 31 (7), 931–944.
(195) Gan, L. Y.; Zhang, Q.; Zhao, Y. J.; Cheng, Y.; Schwingenschlögl, U. Order-Disorder Phase Transitions in the Two-Dimensional Semiconducting Transition Metal Dichalcogenide Alloys Mo1-XWxX2 (X = S, Se, and Te). Scientific Reports 2014, 4, 2–6.
(196) Qu, J.; Li, G. R.; Gao, X. P. One-Dimensional Hierarchical Titania for Fast Reaction Kinetics of Photoanode Materials of Dye-Sensitized Solar Cells. Energy and Environmental Science 2010, 3 (12), 2003–2009.
(197) Ramadoss, A.; Kim, G. S.; Kim, S. J. Fabrication of Reduced Graphene Oxide/TiO2 Nanorod/Reduced Graphene Oxide Hybrid Nanostructures as Electrode Materials for Supercapacitor Applications. CrystEngComm. 2013, 15 (47), 10222–10229.
(198) Dong, S.; Chen, X.; Gu, L.; Zhou, X.; Li, L.; Liu, Z.; Han, P.; Xu, H.; Yao, J.; Wang, H. One Dimensional MnO2/Titanium Nitride Nanotube Coaxial Arrays for High Performance Electrochemical Capacitive Energy Storage. Energy and Environmental Science 2011, 4 (9), 3502–3508.
(199) Dubrovskii, V. G.; Cirlin, G. E.; Ustinov, V. M. Semiconductor Nanowhiskers: Synthesis, Properties, and Applications. Semiconductors 2009, 43 (12), 1539–1584.
(200) Hsu, Y. J.; Lu, S. Y. Vapor-Solid Growth of Sn Nanowires: Growth Mechanism and Superconductivity. Journal of Physical Chemistry B 2005, 109 (10), 4398–4403.
(201) Mandl, B.; Stangl, J.; Hilner, E.; Zakharov, A. A.; Hillerich, K.; Dey, A. W.; Samuelson, L.; Bauer, G.; Deppert, K.; Mikkelsen, A. Growth Mechanism of Self-Catalyzed Group III-V Nanowires. Nano Letters 2010, 10 (11), 4443–4449.
(202) Hou, X.; Wang, X.; Liu, B.; Wang, Q.; Luo, T.; Chen, D.; Shen, G. Hierarchical MnCo2O4 Nanosheet Arrays/Carbon Cloths as Integrated Anodes for Lithium-Ion Batteries with Improved Performance. Nanoscale 2014, 6 (15), 8858–8864.
(203) Lantz, G.; Laulhé, C.; Ravy, S.; Kubli, M.; Savoini, M.; Tasca, K.; Abreu, E.; Esposito, V.; Porer, M.; Ciavardini, A. Domain-Size Effects on the Dynamics of a Charge Density Wave in 1 T-TaS2. Physical Review B 2017, 96 (22), 1–7.
(204) Hussain, S.; Patil, S. A.; Memon, A. A.; Vikraman, D.; Abbas, H. G.; Jeong, S. H.; Kim, H. S.; Kim, H. S.; Jung, J. Development of a WS2/MoTe2 Heterostructure as a Counter Electrode for the Improved Performance in Dye-Sensitized Solar Cells. Inorganic Chemistry Frontiers 2018, 5 (12), 3178–3183.
(205) Chiu, I. T.; Li, C. T.; Lee, C. P.; Chen, P. Y.; Tseng, Y. H.; Vittal, R.; Ho, K. C. Nanoclimbing-Wall-like CoSe2/Carbon Composite Film for the Counter Electrode of a Highly Efficient Dye-Sensitized Solar Cell: A Study on the Morphology Control. Nano Energy 2016, 22, 594–606.
(206) Lv, Y.; Zhu, L.; Xu, H.; Yang, L.; Liu, Z.; Cheng, D.; Cao, X.; Yun, J.; Cao, D. Core/Shell Template-Derived Co, N-Doped Carbon Bifunctional Electrocatalysts for Rechargeable Zn-Air Battery. Engineered Science 2019.
(207) Sun, K.; Wang, L.; Wang, Z.; Wu, X.; Fan, G.; Wang, Z.; Cheng, C.; Fan, R.; Dong, M.; Guo, Z. Flexible Silver Nanowire/Carbon Fiber Felt Metacomposites with Weakly Negative Permittivity Behavior. Physical Chemistry Chemical Physics 2020, 22 (9), 5114–5122.
(208) Sun, K.; Dong, J.; Wang, Z.; Wang, Z.; Fan, G.; Hou, Q.; An, L.; Dong, M.; Fan, R.; Guo, Z. Tunable Negative Permittivity in Flexible Graphene/PDMS Metacomposites. Journal of Physical Chemistry C 2019, 123 (38), 23635–23642.
(209) Xie, P.; Li, Y.; Hou, Q.; Sui, K.; Liu, C.; Fu, X.; Zhang, J.; Murugadoss, V.; Fan, J.; Wang, Y. Tunneling-Induced Negative Permittivity in Ni/MnO Nanocomposites by a Bio-Gel Derived Strategy. Journal of Materials Chemistry C 2020, 8 (9), 3029–3039.
(210) Syrrokostas, G.; Siokou, A.; Leftheriotis, G.; Yianoulis, P. Degradation Mechanisms of Pt Counter Electrodes for Dye Sensitized Solar Cells. Solar Energy Materials and Solar Cells 2012, 103, 119–127.
(211) Tang, Q.; Zhang, H.; Meng, Y.; He, B.; Yu, L. Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye-Sensitized Solar Cells. Angewandte Chemie - International Edition 2015, 54 (39), 11448–11452.
(212) Lopes, P. P.; Tripkovic, D.; Martins, P. F. B. D.; Strmcnik, D.; Ticianelli, E. A.; Stamenkovic, V. R.; Markovic, N. M. Dynamics of Electrochemical Pt Dissolution at Atomic and Molecular Levels. Journal of Electroanalytical Chemistry 2018, 819, 123–129.
(213) Lee, H.; Horn, M. W. Sculptured Platinum Nanowire Counter Electrodes for Dye-Sensitized Solar Cells. Thin Solid Films 2013, 540, 208–211.
(214) Wu, J.; Tang, Z.; Huang, Y.; Huang, M.; Yu, H.; Lin, J. A Dye-Sensitized Solar Cell Based on Platinum Nanotube Counter Electrode with Efficiency of 9.05%. Journal of Power Sources 2014, 257, 84–89.
(215) Fan, M. S.; Lee, C. P.; Li, C. T.; Huang, Y. J.; Vittal, R.; Ho, K. C. Nitrogen-Doped Graphene/Molybdenum Disulfide Composite as the Electrocatalytic Film for Dye-Sensitized Solar Cells. Electrochimica Acta 2016, 211, 164–172.
(216) Wu, J.; Yue, G.; Xiao, Y.; Huang, M.; Lin, J.; Fan, L.; Lan, Z.; Lin, J. Y. Glucose Aided Preparation of Tungsten Sulfide/Multi-Wall Carbon Nanotube Hybrid and Use as Counter Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials and Interfaces 2012, 4 (12), 6530–6536.
(217) Meng, X.; Yu, C.; Lu, B.; Yang, J.; Qiu, J. Dual Integration System Endowing Two-Dimensional Titanium Disulfide with Enhanced Triiodide Reduction Performance in Dye-Sensitized Solar Cells. Nano Energy 2016, 22, 59–69.
(218) Li, Z.; Gong, F.; Zhou, G.; Wang, Z. S. NiS2/Reduced Graphene Oxide Nanocomposites for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C 2013, 117 (13), 6561–6566.
(219) Shukla, S.; Loc, N. H.; Boix, P. P.; Koh, T. M.; Prabhakar, R. R.; Mulmudi, H. K.; Zhang, J.; Chen, S.; Ng, C. F.; Huan, C. H. A. Iron Pyrite Thin Film Counter Electrodes for Dye-Sensitized Solar Cells: High Efficiency for Iodine and Cobalt Redox Electrolyte Cells. ACS Nano 2014, 8 (10), 10597–10605.
(220) Jin, J.; Zhang, X.; He, T. Self-Assembled CoS2 Nanocrystal Film as an Efficient Counter Electrode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C 2014, 118 (43), 24877–24883.
(221) Bai, Y.; Zong, X.; Yu, H.; Chen, Z. G.; Wang, L. Scalable Low-Cost SnS2 Nanosheets as Counter Electrode Building Blocks for Dye-Sensitized Solar Cells. Chemistry - A European Journal 2014, 20 (28), 8670–8676.
(222) Lee, L. T. L.; He, J.; Wang, B.; Ma, Y.; Wong, K. Y.; Li, Q.; Xiao, X.; Chen, T. Few-Layer MoSe2 Possessing High Catalytic Activity towards Iodide/Tri-Iodide Redox Shuttles. Scientific Reports 2014, 4, 1–7.
(223) Guo, J.; Shi, Y.; Zhu, C.; Wang, L.; Wang, N.; Ma, T. Cost-Effective and Morphology-Controllable Niobium Diselenides for Highly Efficient Counter Electrodes of Dye-Sensitized Solar Cells. Journal of Materials Chemistry A 2013, 1 (38), 11874–11879.
(224) Guo, J.; Liang, S.; Shi, Y.; Hao, C.; Wang, X.; Ma, T. Transition Metal Selenides as Efficient Counter-Electrode Materials for Dye-Sensitized Solar Cells. Physical Chemistry Chemical Physics 2015, 17 (43), 28985–28992.
(225) Gong, F.; Xu, X.; Li, Z.; Zhou, G.; Wang, Z. S. NiSe2 as an Efficient Electrocatalyst for a Pt-Free Counter Electrode of Dye-Sensitized Solar Cells. Chemical Communications 2013, 49 (14), 1437–1439.
(226) Huang, S.; He, Q.; Chen, W.; Zai, J.; Qiao, Q.; Qian, X. 3D Hierarchical FeSe2 Microspheres: Controlled Synthesis and Applications in Dye-Sensitized Solar Cells. Nano Energy 2015, 15, 205–215.
(227) Zhu, L.; Cho, K. Y.; Oh, W. C. Microwave-Assisted Synthesis of Bi2Se3 /Reduced Graphene Oxide Nanocomposite as Efficient Catalytic Counter Electrodefordye-Sensitized Solar Cell. Fullerenes Nanotubes and Carbon Nanostructures 2016, 24 (10), 622–629.
(228) Hussain, S.; Patil, S. A.; Memon, A. A.; Vikraman, D.; Abbas, H. G.; Jeong, S. H.; Kim, H. S.; Kim, H. S.; Jung, J. AS15-Development of a WS2/MoTe2 Heterostructure as a Counter Electrode for the Improved Performance in Dye-Sensitized Solar Cells. Inorganic Chemistry Frontiers 2018, 5 (12), 3178–3183.
(229) Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-Dimensional Material Nanophotonics. Nature Photonics 2014, 8 (12), 899–907.
(230) Wang, J.; Verzhbitskiy, I.; Eda, G. Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides. Advanced Materials 2018, 30 (47), 1–14.
(231) Farmer, D. B.; Roksana, G. M.; Perebeinos, V.; Lin, Y. M.; Tuievski, G. S.; Tsang, J. C.; Avouris, P. Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices. Nano Letters 2009, 9 (1), 388–392.
(232) Peters, E. C.; Lee, E. J. H.; Burghard, M.; Kern, K. Gate Dependent Photocurrents at a Graphene p-n Junction. Applied Physics Letters 2010, 97 (19).
(233) Lemme, M. C.; Koppens, F. H. L.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Gate-Activated Photoresponse in a Graphene p-n Junction. Nano Letters 2011, 11 (10), 4134–4137.
(234) Rost, C.; Karg, S.; Riess, W.; Loi, M. A.; Murgia, M.; Muccini, M. Ambipolar Light-Emitting Organic Field-Effect Transistor. Applied Physics Letters 2004, 85 (9), 1613–1615.
(235) Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M Electroluminescence in Single Layer MoS2. Nano Letters 2013, 13 (4), 1416–1421.
(236) Lee, C. H.; Lee, G. H.; Van Der Zande, A. M.; Chen, W.; Li, Y.; Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. Atomically Thin p-n Junctions with van Der Waals Heterointerfaces. Nature Nanotechnology 2014, 9 (9), 676–681.
(237) Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic Effect in an Electrically Tunable Van Der Waals Heterojunction. Nano Letters 2014, 14 (8), 4785–4791.
(238) Ahles, M.; Hepp, A.; Schmechel, R.; Von Seggern, H. Light Emission from a Polymer Transistor. Applied Physics Letters 2004, 84 (3), 428–430.
(239) Risteska, A.; Knipp, D. Organic Ambipolar Transistors and Circuits. In Handbook of Visual Display Technology; Springer International Publishing, 2016; pp 971–995.
(240) Hepp, A.; Heil, H.; Weise, W.; Ahles, M.; Schmechel, R.; von Seggern, H. Light-Emitting Field-Effect Transistor Based on a Tetracene Thin Film. Physical Review Letters 2003, 91 (15).
(241) Kajii, H.; Taneda, T.; Ohmori, Y. Organic Light-Emitting Diode Fabricated on a Polymer Substrate for Optical Links. In Thin Solid Films; 2003; Vol. 438–439, pp 334–338.
(242) Bader, M. A.; Marowsky, G.; Bahtiar, A.; Koynov, K.; Bubeck, C.; Tillmann, H.; Hö, H.-H.; Pereira, S. Poly(p-Phenylenevinylene) Derivatives: New Promising Materials for Nonlinear All-Optical Waveguide Switching; 2002.
(243) Tessler, N.; Pinner, D. J.; Cleave, V.; Ho, P. K. H.; Friend, R. H.; Yahioglu, G.; Le Barny, P.; Gray, J.; De Souza, M.; Rumbles, G. Properties of Light Emitting Organic Materials within the Context of Future Electrically Pumped Lasers.
(244) Zaumseil, J. Recent Developments and Novel Applications of Thin Film, Light-Emitting Transistors. Advanced Functional Materials. 2020, 30, 1905269
(245) Zaumseil, J.; Sirringhaus, H. Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chemical Reviews. 2007, 4, 1296–1323.
(246) Muccini, M. A bright future for organic field-effect transistors. Nature Mater 2006, 5, 605–613
(247) Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. Electrically Tunable Excitonic Light-Emitting Diodes Based on Monolayer WSe2 p-n Junctions. Nature Nanotechnology 2014, 9 (4), 268–272.
(248) Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y.; Jarillo-Herrero, P. Optoelectronic Devices Based on Electrically Tunable p-n Diodes in a Monolayer Dichalcogenide. Nature Nanotechnology 2014, 9 (4), 262–267.
(249) Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-Energy Conversion and Light Emission in an Atomic Monolayer p-n Diode. Nature Nanotechnology 2014, 9 (4), 257–261.
(250) Lien, D. H.; Amani, M.; Desai, S. B.; Ahn, G. H.; Han, K.; He, J. H.; Ager, J. W.; Wu, M. C.; Javey, A. Large-Area and Bright Pulsed Electroluminescence in Monolayer Semiconductors. Nature Communications 2018, 9 (1), 1–7.
(251) Han, K.; Ahn, G. H.; Cho, J.; Lien, D. H.; Amani, M.; Desai, S. B.; Zhang, G.; Kim, H.; Gupta, N.; Javey, A. Bright Electroluminescence in Ambient Conditions from WSe2 p-n Diodes Using Pulsed Injection. Applied Physics Letters 2019, 115 (1).
(252) Kang, B.; Kim, Y.; Cho, J. H.; Lee, C. Ambipolar Transport Based on CVD-Synthesized ReSe2. 2D Materials 2017, 4 (2).
(253) Alcock, N. W.; Kjekshus, A.; Kjekshus, A.; Gronowitz, S.; Hoffman, R. A.; Westerdahl, A. The Crystal Structure of ReSe2. Acta Chemica Scandinavica. 1965, 79–94.
(254) Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B. A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A. Synthesis and Characterization of ReS2 and ReSe2 Layered Chalcogenide Single Crystals. Chemistry of Materials 2016, 28 (10), 3352–3359.
(255) Arora, A.; Noky, J.; Drüppel, M.; Jariwala, B.; Deilmann, T.; Schneider, R.; Schmidt, R.; Del Pozo-Zamudio, O.; Stiehm, T.; Bhattacharya, A Highly Anisotropic In-Plane Excitons in Atomically Thin and Bulklike 1T′-ReSe2. Nano Letters 2017, 17 (5), 3202–3207.
(256) Zhou, C.; Zhao, Y.; Raju, S.; Wang, Y.; Lin, Z.; Chan, M.; Chai, Y. Carrier Type Control of WSe2 Field-Effect Transistors by Thickness Modulation and MoO3 Layer Doping. Advanced Functional Materials 2016, 26 (23), 4223–4230.
(257) Yang, S.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J. B.; Li, S. S.; Li, J.; Wei, S. H. Layer-Dependent Electrical and Optoelectronic Responses of ReSe2 Nanosheet Transistors. Nanoscale 2014, 6 (13), 7226–7231.
(258) Lamfers, H. J.; Meetsma, A.; Wiegers, G. A.; De Boer, J. L. The Crystal Structure of Some Rhenium and Technetium Dichalcogenides. Journal of Alloys and Compounds 1996, 241 (1–2), 34–39.
(259) Kertesz, M.; Hoffmann, R. Octahedral vs. Trigonal-Prismatic Coordination and Clustering in Transition-Metal Dichalcogenides. Journal of the American Chemical Society 1984, 106 (12), 3453–3460.
(260) Zhao, H.; Wu, J.; Zhong, H.; Guo, Q.; Wang, X.; Xia, F.; Yang, L.; Tan, P.; Wang, H. Interlayer Interactions in Anisotropic Atomically Thin Rhenium Diselenide. Nano Research 2015, 8 (11), 3651–3661.
(261) Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman Spectra of Monolayer, Few-Layer, and Bulk ReSe2: An Anisotropic Layered Semiconductor. ACS Nano 2014, 8 (11), 11154–11164.
(262) Ho, C. H.; Hsieh, M. H.; Wu, C. C.; Huang, Y. S.; Tiong, K. K. Dichroic Optical and Electrical Properties of Rhenium Dichalcogenides Layer Compounds. Journal of Alloys and Compounds 2007, 442 (1-2 SPEC. ISS.), 245–248.
(263) Robertson, J. High Dielectric Constant Oxides. EPJ Applied Physics. 2004, 12, 265–291.
(264) Zhao, Y.; Xu, K.; Pan, F.; Zhou, C.; Zhou, F.; Chai, Y. Doping, Contact and Interface Engineering of Two-Dimensional Layered Transition Metal Dichalcogenides Transistors. Advanced Functional Materials. Wiley-VCH Verlag May 18, 2017.
(265) McDonnell, S.; Azcatl, A.; Addou, R.; Gong, C.; Battaglia, C.; Chuang, S.; Cho, K.; Javey, A.; Wallace, R. M. Hole Contacts on Transition Metal Dichalcogenides: Interface Chemistry and Band Alignments. ACS Nano 2014, 8 (6), 6265–6272.
(266) You, H.; Dai, Y.; Zhang, Z.; Ma, D. Improved Performances of Organic Light-Emitting Diodes with Metal Oxide as Anode Buffer. Journal of Applied Physics 2007, 101 (2), 2005–2008.
(267) Tokito, S.; Noda, K.; Taga, Y. Metal Oxides as a Hole-Injecting Layer for an Organic Electroluminescent Device. Journal of Physics D: Applied Physics 1996, 29 (11), 2750–2753.
(268) Chen, C. W.; Lu, Y. J.; Wu, C. C.; Wu, E. H. E.; Chu, C. W.; Yang, Y. Effective Connecting Architecture for Tandem Organic Light-Emitting Devices. Applied Physics Letters 2005, 87 (24), 1–3.
(269) Morii, K.; Omoto, M.; Ishida, M.; Graetzel, M. Enhanced Hole Injection in a Hybrid Organic-Inorganic Light-Emitting Diode. Japanese Journal of Applied Physics 2008, 47 (9), 7366–7368.
(270) Reynolds, K. J.; Barker, J. A.; Greenham, N. C.; Friend, R. H.; Frey, G. L. Inorganic Solution-Processed Hole-Injecting and Electron-Blocking Layers in Polymer Light-Emitting Diodes. Journal of Applied Physics 2002, 92 (12), 7556–7563.
(271) Jiang, S.; Zhang, Z.; Zhang, N.; Huan, Y.; Gong, Y.; Sun, M.; Shi, J.; Xie, C.; Yang, P.; Fang, Q. Application of Chemical Vapor–Deposited Monolayer ReSe2 in the Electrocatalytic Hydrogen Evolution Reaction. Nano Research 2018, 11 (4), 1787–1797.
(272) Cui, F.; Li, X.; Feng, Q.; Yin, J.; Zhou, L.; Liu, D.; Liu, K.; He, X.; Liang, X.; Liu, S. Epitaxial Growth of Large-Area and Highly Crystalline Anisotropic ReSe2 Atomic Layer. Nano Research 2017, 10 (8), 2732–2742.
(273) Hafeez, M.; Gan, L.; Li, H.; Ma, Y.; Zhai, T. Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe2 Flakes for Anisotropic Raman Property and Optoelectronic Application. Advanced Materials 2016, 8296–8301.
(274) Han, K.; Ahn, G. H.; Cho, J.; Lien, D. H.; Amani, M.; Desai, S. B.; Zhang, G.; Kim, H.; Gupta, N.; Javey, A. Bright Electroluminescence in Ambient Conditions from WSe2 -n Diodes Using Pulsed Injection. Applied Physics Letters 2019, 115, 1.
(275) C. Mainland, International Physics Olympiads: Problems and Solutions from 1967-1995, Rangsit University Press, 9745300373
(276) Anderson, J. Fundamentals of Photonics 3rd Edition. 2013, 5, 447–469.
(277) A. Ryer, The Light Measurement Handbook, International Light Technologies, 1997, 965835693.