簡易檢索 / 詳目顯示

研究生: 林彥妙
論文名稱: 低溫脈衝電鍍製備法對銅奈米線的微結構和電性影響之研究
Microstructure and Electrical Property of Copper Nanowires Fabricated by Pulsed Electrodeposition at Low Temperature
指導教授: 廖建能
口試委員: 徐文光
吳樸偉
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 70
中文關鍵詞: 銅奈米線脈衝電鍍雙晶
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於銅金屬擁有良好的電導率,已經被廣泛應用在微米尺度電子元件中作為連結元件間的導線。此外,一維的銅奈米結構由於其不同於傳統塊材的物理特性,以及它在奈米尺度電子元件應用上的潛力進而受到相當大的注意。然而,電子元件進入奈米尺度的同時,材料需要具備高的機械強度,同時保持良好的導電特性,避免因為元件尺寸的縮小而提高電致遷移效應對元件損壞的可能性,才能進而延長電子元件的壽命。有文獻指出,若在銅的晶粒中引入高密度雙晶結構,不僅能大幅提升其機械性質,同時維持良好的導電率,並且使得銅具備較高的抗電致遷移特性。在本實驗中,我們已經成功地使用脈衝電鍍沈積法在自製陽極氧化鋁模板中製備出具有高密度竹節狀雙晶結構的銅奈米線。本實驗藉由改變電鍍製程中的電流密度及電鍍環境溫度,進而改變銅奈米線的結晶方向及微結構。銅奈米線經由X-ray結晶繞射儀分析顯示具有[111]的優選方向,透過高解析穿透式電子顯微鏡的觀察,銅導線平均雙晶間距為10至30奈米,且隨著脈衝電流密度的提升而變大。然而在相同電流密度下,降低電鍍環境溫度,銅導線內部的平均雙晶間距會隨之變小。電性量測的結果顯示,具備高密度雙晶結構的銅奈米線,相對於沒有雙晶結構的銅奈米線,在元件損壞前可以承受較大的電流密度。


    Copper (Cu) metallization possesses good electrical conductivity and has been utilized as an interconnecting material in microelectronic devices. Besides, one-dimensional (1D) Cu nanostructures have received great attention due to their different physical properties compared to traditional bulk Cu, and have shown attractive potential in nanoelectronic devices these days. However, while the dimension of devices is narrowing down to nanoscale, the material should have high mechanical strength but also remain decent electrical conductivity at the same time, in order to lower the probability of device failure by electromigration, and then extend the device lifetime. Copper with high-density nanotwins is well known to have higher mechanical strength compared to fine-grained Cu, good electrical conductivity, and moreover, better electromigration resistance. We have successfully fabricated Cu nanowires with high density of nanoscale traverse twinning structures in home-made AAO using pulsed electrodeposition. And the texture and microstructure of Cu nanowires are related to several deposition factors, such as current density and deposition temperature. X-ray diffraction (XRD) analysis on the Cu nanowires revealed a [111] preferred orientation. The average twin spacing from 10 to 30 nm have been observed by high-resolution transmission electron microscopy (TEM), and the spacing is larger when the peak current density increases. Moreover, under the same current density, the spacing becomes narrower while deposition is conducted at a lower temperature. From I-V electrical measurement, the Cu nanowires with high density of nanotwins can sustain larger density of current before failure than those without dense nanotwins.

    摘要 I Abstract II 誌謝 III Contents IV List of Figures VI List of Tables XI Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Organization of thesis 3 Chapter 2 Literature Review 4 2.1 Template assisted preparation of nanostructures 4 2.2 Production of AAO membrane 5 2.2.1 The structure of AAO 5 2.2.2 The mechanism of AAO template formation 5 2.2.3 The anodization parameters controlling AAO morphology 9 2.2.4 Two-step anodization process 12 2.2.5 The advantages of AAO template assisted preparation of nanostructures 13 2.3 Electromigration physics 13 2.3.1 Effect of twin boundaries on Cu electromigration 15 2.4 Effect of twin boundaries on Cu properties 18 2.4.1 Mechanical and Electrical properties of twin boundaries in Cu films 18 2.4.2 Mechanical and Electrical properties of twin boundaries in Cu nanowires 21 Chapter 3 Experimental Procedure 27 3.1Specimen preparation 28 3.1.1 Experimental process flow 28 3.1.2 Fabrication of through-hole AAO films 28 3.1.3 Electrodeposition of Cu nanowires 31 3.2 Analysis techniques 33 3.2.1 X-ray diffractometer (XRD) 33 3.2.2 Field-emission scanning electron microscope (FE-SEM) 34 3.2.3 Transmission electron microscope (TEM) 35 3.2.4 Electrical testing of Cu nanowires 36 Chapter 4 Results and Discussion 39 4.1 Preface 39 4.2 Homemade AAO morphology 39 4.3 Electrodeposition of Cu nanowires 40 4.4 Texture of Cu nanowires 43 4.5 Twin formation mechanism 51 4.6 Electrical property of Cu nanowires 58 Chapter 5 Conclusions 66 5.1 Conclusions 66 5.2 Future Works 66 References 68

    [1] K.N. Tu, J. Appl. Phys., 94, 5451 (2003)
    [2] L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Science, 304, 422 (2004)
    [3] H. Masuda, K. Fukuda, Science, 268, 1466 (1995)
    [4] Y. Lei, W.P. Cai, G. Wild, progress in materials science, 52, 465 (2007)
    [5] M. Gerardin, Compt. Rend., 53, 727 (1861)
    [6] O. Jessensky, F. Müller, and U. Gösele, Appl. Phys. Lett., 72,1173 (1998)
    [7] F. Li, L. Zhang, and R.M. Metzger, Chem. Mater., 10, 2470 (1998)
    [8] A.P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, J. Appl. Phys., 84, 11 (1998)
    [9] O’Sullivan, J.P. Wood, G.C., Proc. R. Soc. London A, 317, 511 (1970)
    [10] G. Paolini, M. Masoero, F. Sacchi, and M. Paganelli, J. Electrochem. Soc., 112, 32 (1965)
    [11] K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys., 91, 3243 (2002)
    (12) E. Liniger, L. Gignac, C.K. Hu, and S. Kaldor, J. Appl. Phys., 92, 1803 (2002)
    [13] V.B. Fiks, Sov. Phys.-Solid State, 1, 14 (1959)
    [14] H.B. Hungtington and A.R. Grone, J. Phys. Chem. Solids, 20, 76 (1961)
    [15] V.P. Parkhutik and V.I. Shershulsky, J. Phys. D: Appl. Phys., 25, 1258 (1992)
    [16] C.K. Hu, R. Rosenberg, and K.Y. Lee, Appl. Phys. Lett., 74, 2945 (1999)
    [17] S.J. Rothman and N.L. Perterson, Phys. Status Solidi., 35, 305 (1969)
    [18] CS. Hau-Riege, Microelectron. Reliab., 44, 195 (2004)
    [19] J.R. Lloyd, J. Clemens, and R. Snede, Microelectron. Reliab., 39, 1595 (1999)
    [20] S. Vaidya, T.T. Sheng, and A.K. Sinha, Appl. Phys. Lett., 36, 464 (1980)
    [21] Y.C. Joo and C.V. Thompson, J. Appl. Phys., 76, 7339 (1994)
    [22] F. d’Heurle and I. Ames, Appl. Phys. Lett., 16, 80 (1970)
    [23] C. Ryu, K.W. Kwon, A.L.S. Loke, H. Lee, T. Nogami, V.M. Dubin, R.A. Kavari, G.W. Ray, and S.S. Wong, IEEE Trans. Electron. Devices, 46, 1113 (1999)
    [24] M. Karimi and T. Tomkowski, Phys. Rev. B, 52, 5364 (1995)
    [25] H. Lee and S.D. Lopatin, Thin Solid Films, 492, 279 (2005)
    [26] 陳冠嘉, 國立清華大學博士論文 (2008)
    [27] L. Xu, P. Dixit, J. Miao, J.H.L. Pang, X. Zhang, K.N. Tu, and R. Preisser, Appl. Phys. Lett., 90, 033111 (2007)
    [28] J.W. Christian, S. Mahajan, Prog. Mater. Sci., 39, 1 (1995)
    [29] A.P. Sutton, R.W. Ballffi, Interfaces in Crystalline Materials (Clarendon, Oxford, 1995)
    [30] D.C. Jang, C. Cai, and J.R. Greer, Nano Lett.,11, 1743 (2011)
    [31] S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim, H. Hahn, and T. Schimmel, Small, 5, 2265 (2009)
    [32] F. Maurer, J. Brötz, S. Karim, M.E.T. Molares, C.T.H. Fuess, Nanotechnology, 18, 1135709 (2007)
    [33] X.W. Zhou, H.N.G. Wadley, Acta Materialia, 47, 1063 (1999)
    [34] M. Tian, J. Wang, J. Kurtz, T. Mallouk and M. Chan, NanoLett., 3, 919 (2003)
    [35] C. Detavernier, S. Rossnage, C. Noyan, S. Guha, C. Cabral, Jr., and C. Lavoie, J. Appl. Phys., 94, 2874 (2003)
    [36] D. Xu, V. Sriram, V. Ozolins, J.M. Yang, K.N. Tu, G.R. Stafford, and C. Beauchamp, J. Appl. Phys., 105, 023521 (2009)
    [37] I. Nakamichi, Mat. Sci. Forum, 47, 207 (1996)
    [38] B.Z. Cui, K. Han, Y. Xin, D.R. Waryoba, A.L. Mbaruku, Acta Materialia, 55, 4429 (2007)
    [39] R.L. Graham, G.B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R.H. Geiss, D.T. Read, and S. Peddeti, Appl. Phys. Lett., 96, 042116 (2010)
    [40] H. Marom, J. Mullin, and M. Eizenberg, Phys. Rev. B, 74, 045411 (2006)
    [41] ASM International, Surface Wear: Analysis, Treatment, and Prevention, chapter 1(2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE