研究生: |
郭兆誼 Kuo, Chao-Yi |
---|---|
論文名稱: |
Blind Maximan-Likelihood Detection for Decode-and-forward Randomized Distributed OSTBC 解碼轉送隨機分散式正交空時區塊編碼之盲蔽最大似然偵測 |
指導教授: |
祁忠勇
Chi, Chong-Yung 張縱輝 Chang, Tsung-Hui |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 盲蔽最大似然檢測器 、中繼網路 、最大傳送分集 、分散式正交空時區塊編碼 |
外文關鍵詞: | Blind ML detection, relay networks, maximum transmit diversity, DOSTBC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, we consider the randomized distributed orthogonal space-time block coding (DOSTBC) system proposed by Sirkeci-Mergen and Scaglione [3], and consider a situation where some of the cooperative relays can unexpectedly disconnect from the network during the data frame transmission. Such an event translates into abrupt changes of the virtual channel matrix at the receiver; and a coherent maximum-likelihood (ML) detector, which assumes that the virtual channel matrix is perfectly known and static, can be severely degraded in performance. In fact, the simulation results reveal that the coherent ML detector with mismatched channel state information (CSI) exhibits an error floor for high signal-to-noise ratio (SNR).
We propose a blind maximum-likelihood (ML) detector and a non-intersecting subspace (NIS) code scheme for the randomized DOSTBC system. With a mild assumption on the transmission protocol, we show that the proposed blind ML detector is robust against the unexpected relay disconnection problem. Moreover, we show that the randomized NIS code scheme can achieve the maximum transmit diversity with the blind ML receiver. Some simulation results are presented to demonstrate the efficacy of the proposed method. Furthermore, we propose a full blind ML detector which does not require any pilot bits for solving the inherent sign ambiguity problem, which thereby is more spectrum efficient. Some simulation results are presented to demonstrate the efficacy of the proposed method.
在訊號從傳送端透過一群中繼器(relay)替代傳統多輸入多輸出系統的天線,傳送資料到接收端的合作式通訊之中,本論文應用Mergen與Scaglione[3]所提出的隨機分散式正交空時區塊編碼(randomized distributed orthogonal space-time block coding)系統,考慮有一些中繼器在資料傳輸途中突然從中繼網路斷訊的問題;因而造成中繼器與接收端之間的虛擬通道矩陣(virtual channel matrix)轉變,對於一個假設已知虛擬通道資訊的同調最大似然檢測器(coherent maximum-likelihood (ML) detector)而言,其效能會嚴重變差。在我們所做的模擬結果,顯示了同調最大似然檢測器在資料傳輸的過程當中,遇到中繼器無預警斷訊的問題時,在訊雜比(signal-to-noise)很高時,會出現錯誤地板(error floor)現象。
吾等提出盲蔽最大似然檢測器(blind ML detector),其使用子空間無交集碼(non-intersecting subspace codes)方法的隨機分散式空時區塊編碼系統,只需一個前導位元(pilot bit),就能保證資料鑑別的唯一性(unique data identifiability)。加上一些通訊協定上的簡單假設,分析證明我們所提出來的盲蔽最大似然檢測器可以有效抵抗中繼器無預警斷訊的問題。此外,我們也證明了盲蔽最大似然接收端使用隨機子空間無交集碼的方法,可以達到最大之傳送分集(maximum transmit diversity)。另外,我們還提出了全盲蔽最大似然檢測器(full blind maximum-likelihood detector),其不需要前導位元就能解決內在符號歧異性(inherent sign ambiguity)的問題,因此傳輸效率更高。最後的模擬結果亦印證了我們所提出的方法之效能。
[1] Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay networks,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3534–3536, Dec. 2006.
[2] S. Yiu, R. Schober, and L. Lampe, “Distributed space-time block coding,” IEEE Trans. Commun., vol. 54, no. 7, pp. 1195–1206, July 2006.
[3] B. Sirkeci-Mergen and A. Scaglione, “Randomized space-time coding for distributed cooperative communication,” IEEE Trans. Signal Process., vol. 55, no. 10, pp. 5003–5017, Oct. 2007.
[4] W.-K. Ma, B.-N. Vo, T. N. Davidson, and P.-C. Ching, “Blind ML detection of orthogonal space-time block codes: Efficient high-performance implementations,” IEEE Trans. Signal Process., vol. 54, no. 2, pp. 738–751, Feb. 2006.
[5] W.-K. Ma, “Blind ML detection of orthogonal space-time block codes: Identifiability and code construction,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3312–3324, July 2007.
[6] S.M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[7] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456–1467, July 1999.
[8] G. Ganasan and P. Stoica, “Space-time block codes: A maximum SNR approach,” IEEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1650–1656, May 2001.
[9] E. G. Larsson and P. Stoica, Space-Time Block Coding forWireless Communications. Cambridge, UK: Cambridge University Press, 2003.
[10] Ho Ting Cheng, Hakam Mheidat, Murat Uysal, and Tat Ming Lok, “Distributed space-time block coding with imperfect channel estimation,” in Proc. IEEE ICC, no. 1, pp. 583–587, May 2005.
[11] G. Taricco and E. Biglieri, “Non-coherent and mismatched-coherent receivers for distributed STBCs with amplify-and-forward relaying,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1874–1888, July 2005.
[12] S. Shahbazpanahi, A.B. Gershman, and J.H. Manton, “Closed-form blind MIMO channel estimation for orthogonal space-time block codes,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4506–4517, Dec. 2005.
[13] A. L. Swindlehurst and G. Leus, “Blind and semi-blind equalization for generalized space-time block codes,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2489–2498, Oct. 2002.
[14] G. Ganesan and P. Stoica, “Differential detection based on space-time block codes,” Wireless Perosnal Commun., Norwell, MA: Kluwer, pp. 163–180, 2002.
[15] E. G. Larsson, P. Stoica, and J. Li, “On maximum-likelihood detection and decoding for space-time coding systems,” IEEE Trans. Signal Process., vol. 50, no. 4, pp. 937–944, April 2002.
[16] B. Hochwald and T. Marzetta, “Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 46, no. 2, pp. 543–564, March 2000.
[17] T. Wang, Y. Yao, and G. B. Giannakis, “Non-coherent distributed space-time processing for multiuser cooperative transmissions,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3339–3343, Aug. 2003.
[18] F. E. Oggier, N. J. A. Sloane, S. N. Diggavi, and A. R. Calderbank, “Nonintersecting subspaces based on finite alphabets,” IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 4320–4325, Dec. 2005.
[19] R. Horn and C. Johnson. Matrix Analysis, Cambridge U.K.: Cambridge University Press, 1990.
[20] S. Talwar, M. Viberg, and A. Paulraj, “Blind separation of synchronous co-channel digital signals using an antenna array Part I: Algorithms,” IEEE Trans. Signal Process., vol. 44, no. 5, pp. 1184–1197, May 1996.
[21] M. O. Damen, H. E. Gamal, and G. Caire, “On maximum-likelihood detection and the search for the closest lattice point,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2389–2402, Oct. 2003.
[22] J. Jalden and B. J. Ottersten, “On the complexity of sphere decoding in digital communications,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1474–1484, April 2005.
[23] M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problem using semi-definite programming,” J. ACM, vol. 42, no. 6, pp. 1115–1145, Nov. 1995.
[24] W.-K. Ma, T. N. Davidson, K. M. Wong, Z.-Q. Luo, and P.-C. Ching, “Quasimaximum- likelihood multiuser detection using semidefinite relaxation with application to synchronous CDMA,” IEEE Trans. Signal Process., vol. 50, no. 4, pp. 912–922, April 2002.
[25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
[26] P. K. Andersen and R. D. Gill, “Cox’s regression model for counting processes: A large sample study,” Ann. Statist., vol. 10, no. 4, pp. 1100–1120, 1982.
[27] E. Biglieri, G. Caire, G. Taricco, and J. Ventura-Traveset, “Computing error probabilities over fading channels: A unified approach,” Eur. Trans. Telecommun., vol. 9, pp. 15–25, Jan. 1998.
[28] A. Wiesel, Y. C. Eldar, and S. Shamai, “Semidefinite relaxation for detection of 16-QAM signaling in MIMO channels,” IEEE Signal Process., vol. 12, no. 9, pp. 653–656, Sep. 2005.