簡易檢索 / 詳目顯示

研究生: 黃宗煜
Tsung-Yu Huang
論文名稱: 粗糙表面對液滴成形影響之研究
Effects of Rough Surfaces on the Formation of Droplets
指導教授: 陳文華
Wen-Hwa Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 38
中文關鍵詞: 液滴粗糙面結合Surface Evolver程式
外文關鍵詞: droplet, rough surface, coalesence, Surface Evolver
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先利用Surface Evolver程式及力平衡分析,探討水液滴於粗糙表面之懸浮與塌陷情形,並與Extrand(2002)之實驗結果相互驗證。接著,以類似蓮花表面突狀組織之粗糙面為對象,分析不同尺寸水液滴(直徑在 區間)懸浮時之最大高度與直徑。結果顯示,當水液滴直徑在 區間時,直徑越大,重力對於水液滴最大高度之影響越顯著,唯對於最大直徑幾無影響。而當水液滴直徑在 以下時,水液滴之重力效應與表面張力相較,則可忽略。
    本論文亦探討了兩水液滴在不同性質平滑固體表面上之結合情形,並進而修正Narhe等人(2004)實驗數據之誤植。對於具不同表面張力液滴在平滑固體表面之結合行為,亦予研討。
    本論文之研究成果將可供奈微米及生物科技相關研究之參考。


    This work is first devoted to the suspension or collapse study of water droplet on rough surface based on the equilibrium of force using Surface Evolver program. The results are compared with the experiment by Extrand (2002). Then, taking similar convex epidermal cells of lotus as rough surface, different sizes of suspended water droplets (with diameter between ) are analyzed for calculating their maximum height and diameter. The results show that, when the diameter of water droplets is from to , more distinct influence of gravity on the maximum height of water droplets will be found as the diameter gets larger, but the effect on the maximum diameter can be ignored. However, when the diameter of water droplets is smaller than , the gravity effect is negligible compared with that of surface tension.
    This work also focuses on the study of the coalescence of two water droplets on different smooth surfaces. The mistake of experiment data made by Narhe et al.(2004) is corrected. The coalescence of two droplets with different surface tensions on smooth surface is also explored.
    The results achieved in this work will be helpful for the relevant researches of nano/micro technology and biotechnology.

    目錄 摘要......................................................Ⅰ 目錄......................................................Ⅲ 圖表目錄........................................................Ⅴ 第一章、導論.........................................................1 第二章、液滴成形及結合.........................................................3 2.1 表面張力..........................................3 2.2 重力效應..........................................4 2.3 粗糙表面相關參數..................................4 2.3.1 接觸角..........................................5 2.3.2 粗糙因子........................................6 2.3.3 複合接觸比例....................................6 2.4 懸浮與塌陷........................................7 2.5 液滴結合..........................................9 第三章、Surface Evolver程式...............................11 第四章、成果與討論........................................13 4.1 液滴成形.....................................13 4.2 液滴結合.....................................15 4.2.1 水液滴結合.....................................15 4.2.2 汞液滴結合.....................................16 4.2.3 不同接觸角下之兩水液滴結合.....................17 4.3 不同表面張力液滴結合.............................17 第五章、結論與未來展望....................................19 參考文獻..................................................21 圖表目錄 表一、水液滴懸浮或塌陷之定性模擬結果.....................24 圖一、蓮葉表面結構與表皮細胞(Barthlott等人, 1997) .......25 圖二、表面張力與重力效應關係(McMahon等人, 1983)..........26 圖三、液滴與固體表面接觸情形.............................27 圖四、不同粗糙面結構示意圖...............................28 圖五、懸浮液滴與接觸力及重力示意圖.......................29 圖六、不同水液滴接觸型態之模擬結果.......................30 圖七、不同尺寸水液滴最大高度值...........................31 圖八、不同尺寸水液滴最大直徑值...........................32 圖九、兩水液滴接觸前輪廓圖...............................33 圖十、兩水液滴結合後輪廓圖...............................34 圖十一、不同接觸角下兩水液滴結合後之最大高度變化.........35 圖十二、不同接觸角下兩水液滴結合後之最大直徑變化.........36 圖十三、不同接觸角下兩水液滴結合後之接觸面積變化.........37 圖十四、正十六烷液滴與正庚烷液滴之結合...................38

    1. Adamson, A. W. and Gast, A. P., 1997 : Physical Chemistry of Surfaces, sixth ed. John Wiley & Sons, New York.
    2. Barthlott, W. and Neinhuis, C., 1997, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta, Vol.202, pp.1-8.
    3. Brakke, K. A., 1996 : Surface Evolver Manual, Version 2.01. The Geometry Center. University of Minnesota.
    3. Cassie, A. B. D. and Baxter, S., 1944, “Wettability of Porous Surface,” Transactions of the Faraday Society, Vol.40, pp.546-551.
    4. Chen, J. H., Yang, J. T., Yu, C. S. and Hu, Y. C., 2004, “Droplet Manipulation over a Micro-Textured Surface with Roughness Pattern,” The 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, North Carolina, USA, July 11-15.
    5. Extrand, C. W., 2002, “Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces,” Langmuir, Vol.18, pp.7991-7999.
    6. Lawrence, J. and Li, L., 2000, “Carbon steel wettability characteristics enhancement for improved enamelling using a 1.2 kW high power diode laser,” Optics and Lasers in Engineering, Vol.32, pp.353-365.
    7. Lee, J., Moon, H., Fowler, J., Schoellhammer, T. and Kim, C. J., 2002, “Electrowetting and Electrowetting-On-Dielectric for Microscale Liquid Handling,” Sensors and Actuators A, Vol.95, pp.259-268.
    8. He, B. and Lee, J., 2003, “Dynamic Wettability Switching by Surface Roughness Effect,” IEEE Conference MEMS, pp.120-123.
    9. McMahon, T. A. and Bonner, J. T., 1983 : On Size and Life, Scientific American Books, New York.
    10. Menchaca-Rocha, A., Martínez-Dávalos, A. and Núñez, R., 2001, “Coalescence of Liquid Drops by Surface Tension,” Physical Review E, Vol.63, pp.046309-1~5.
    11. Narhe, R., Beysens, D. and Nikolayev, V. S., 2004, “Contact Line Dynamics in Drop Coalescence and Spreading,” Langmuir, Vol.20, pp.1213-1221.
    12. Nguyen, N. T. and Wereley, S. T., 2002 : Fundamentals and Applications of Microfluidics, first ed. Artech House, Boston.
    13. Oosterbroek, R. E. and van den Berg, A., 2003 : Lab on a chip, first ed. Elsevier, AE Amsterdam, Netherlands.
    Patankar, N. A., 2003, “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, Vol.19, pp.1249-1253.
    14. Patankar, N. A., 2004, “Transition between Superhydrophobic States on Rough Surfaces,” Langmuir, Vol.20, pp.7097-7102.
    15. Shibuichi, S., Onda, T., Satoh, N., and Tsujii, K., 1996, “Super Water-Repellent Surfaces Resulting from Fractal Structure,” Journal of Physical Chemistry, Vol.100, pp.19512-19517.
    16. Washizu, M., 1998, “Electrostatic Actuation of Liquid Droplets for Micro-reactor Applications,” IEEE Transactions on Industry Applications, Vol.34, pp.732-737.
    17. Williams, V., Kashanin, D., Shvets, I. V., Mitchell, S., Volkov Y. and D. Kelleher, 2002, “Microfluidic Enabling Platform for Cell-based Assays,” Journal of the Association for Laboratory Automation, Vol.7, pp.135-141.
    18. Wenzel, R. N., 1936, “Resistance of Solid Surface to Wetting by Water,” Industrial and Engineering Chemistry, Vol.28, pp.988-994.
    19. Yoshimitsu, Z., Nakajima, A., Watanabe, T., and Hashimoto, K., 2002, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir, Vol.18, pp.5818-5822.
    20. 高天冀, 1998, “液滴碰撞行為分析和液滴產生器研發設計,” 國立成功大學機械工程學系碩士論文.
    21. 傅新淵, 2002, “多組份二元液滴碰撞與燃燒之研究,” 國立台灣大學機械工程學系碩士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE