簡易檢索 / 詳目顯示

研究生: 施靖祥
論文名稱: 以晶格波玆曼法結合親/疏水性邊界模擬液氣兩相流之流場
Lattice Boltzmann Simulations of Incompressible Liquid-Gas system on Partial Wetting Surface
指導教授: 林昭安
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 71
中文關鍵詞: 晶格波茲曼兩相流親水性疏水性
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, a lattice Boltzmann multiphase fluid model capable to deal with large density ratio and with partial wetting surface is introduced. Multiphase fluid behavior can be simulated using the the Navier-Stokes equation coupling with convective Cahn-Hilliard equation [1], where the latter equation is used to capture the interface of multiphase fluid in terms of chemical potential. By adopting the multiphase model and adding an additional
    term describing surface energy, a droplet rests on a surface with given contact angle can be computed.

    The capability of the present model, which is to compute two phase flows with wettability controllable surface, is validated by simulating a droplet that rests on a surface with given contact angle. The contact angles calculated from the results agree with theory. The effect of gravitational force on droplet shape is also discussed in terms of Bond number. Besides, phenomena caused by different wetting condition of the surface are presented in this thesis, such as droplet on heterogeneous surface and transient response of a droplet with changing wettability.

    The present model is applied to simulate liquid lens cases. The simulation result shows good compatibility with the experiment done by Hsieh et al [58], where Bond number is about $0.05$. Further improvement of the lens fabrication technique is suggested with observations in the present work. Optical properties of the lens such as back focal length of the liquid lens can be changed by controlling Bond number to reach wider FOV or longer BFL, which are
    important specifications in optics.


    1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Multiphase and multicomponent uid systems . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Partial wetting boundary . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Lattice Boltzmann multiphase fluid model . . . . . 4 1.2.2 Lattice Boltzmann multiphase fluid model with large density ratio . . . . . . . 6 1.2.3 Wettability control on the solid surface . . . . . 8 1.3 Electrowetting and its applications . . . . . . . . 10 1.4 Objective and motivation . . . . . . . . . . . . . . 11 2 Theory and governing equations 12 2.1 The Boltzmann equation . . . . . . . . . . . . . . . 12 2.2 The BGK and the low-Mach-number approximation . . . 13 2.2.1 The BGK approximation . . . . . . . . . . . . . . 13 2.2.2 The low-Mach-number approximation. . . . . . . . . 15 2.3 Discretization of the Boltzmann equation . . . . . . 16 2.3.1 Discretization of phase space . . . . . . . . . . 16 2.3.2 Dicretization of time . . . . . . . . . . . . . . 18 2.4 The free-energy model . . . . . . . . . . . . . . . 19 2.4.1 The free-energy function . . . . . . . . . . . . . 19 2.4.2 Analytical solution of interface profile . . . . . 20 2.5 A Lattice Boltzmann model for multiphase flows with large densityratio . . . . . . . . . . . 21 2.5.1 The governing equation . . . . . . . . . . . . . . 21 2.5.2 Lattice Boltzmann equaiton . . . . . . . . . . . . 22 2.5.3 Interface capturing equation . . . . . . . . . . . 23 2.6 Non-dimensionalized governing equations . . . . . . 24 2.7 Wetting theory . . . . . . . . . . . . . . . . . . . 25 2.7.1 Basic aspect of wetting . . . . . . . . . . . . . 25 2.7.2 Electrowetting theory . . . . . . . . . . . . . . 26 2.7.3 Wettability Modelling . . . . . . . . . . . . . . 27 3 Numerical algorithm 29 3.1 Simulation procedure . . . . . . . . . . . . . . . . 29 3.2 Boundary conditions for the computational domain . . 30 3.2.1 Velocity boundary conditions for solving fluid flow . . . . . . . . . . . . . . . . . . . . 30 3.2.2 Bounce back boundary conditions for solving interface capture equation . . . . . . . . . . . . 32 3.3 Partial wetting condition (PWC). . . . . . . . . . . 32 4 Numerical results 34 4.1 Numerical validation . . . . . . . . . . . . . . . . 34 4.1.1 Interface profile . . . . . . . . . . . . . . . . 34 4.1.2 Wettability control. . . . . . . . . . . . . . . . 37 4.2 Effect of Bond number. . . . . . . . . . . . . . . . 39 4.3 Droplet on a heterogeneous surface . . . . . . . . . 43 4.4 Transient response of a droplet . . . . . . . . . . 45 4.5 Applications: Lens fabrication technique by electrowetting . . . . 51 5 Conclusions 63

    [1] J.W. Cahn, J.E Hilliard," Free energy of a nonuniform system.-Interfacial energy," J. Chem. Phys. 28(2)(1958)
    [2] U. Frisch, B. Hasslacher, and Y. Pomeau, ``Lattice-gas automata for the Navier-Stokes equation," Phys. Rev. Lett. 56, 1505, (1986).
    [3] S. Wolfram, ``Cellular automaton fluids 1: Basic theory," J. Stat. Phys. 45, 471, (1986).
    [4] F. J. Higuera, S. Sussi, and R. Benzi, ``3-dimensional flows in complex geometries with the lattice Boltzmann method," Europhys. Lett. 9, 345, (1989).
    [5] F. J. Higuera, and J. Jemenez, ``Boltzmann approach to lattice gas simulations," Europhys. Lett. 9, 663, (1989).
    [6] P. L. Bhatnagar, E. P. Gross, and M. Grook, ``A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems," Phys. Rev. E 94, 511 (1954).
    [7] S. Harris, ``An introduction to the throry of the Boltzmann equation," Holt, Rinehart and Winston, New York, (1971).
    [8] U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet, ``Lattice gas hydrodynamics in two and three dimensions," Complex Syst. 1, 649, (1987).
    [9] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, ``Comparison of spectral method and lattice Boltzmann simulations of twodimensional hydrodynamics," Phys. Fluids 6, 1285, (1994).
    [10] R. Scardovelli and S. Zaleski. ``Direct numerical simulation of free-surface and interfical flow," Annu.Rev.Fluid Mech.,31:567(1999).
    [11] S. Osher and R. P, Fedkiw. ``Level set method: An overview and some recent results," J. Comput. Phys., 169:463,(2001).
    [12] T. Y. Hou, J.S. Lowengrub,and M.J.Shelley. ``Boundary integral methods for multicomponent fluids and multiphase materials " J. Comput.Phys., 169-302,(2001).
    [13] A.J. Briant, P. Papatzacos, and J. M. Yeomans, ``Lattice Boltzmann simulations of contact line motion in a liquid-gas system. " Phil. Trans. Roy. Soc. A , 360, 485. (2002)
    [14] A. J. Briant, Wagner, A. J. and J. M. Yeomans, ``Lattice Boltzmann
    simulations of contact li e motion: I. Liquid-gas systems. " Phys. Rev. E 69 (2004) 031602
    [15] A. J. Briant, J. M. Yeomans, ``Lattice Boltzmann simulations of contact line motion: II. Binary fluids. " Phys. Rev. E 69 (2004) 031603
    [16] M. R. Swift, W. R. Osborn, and J. M. Yeomans ``Lattice Boltzmann simulation of nonideal fluids." Phys. Rev. Lett.,75(5):830-833(1995)
    [17] M. R. Swift, W. R. Osborn, and J. M. Yeomans ``Lattice Boltzmann simulations of liquid-gas and bunary-fluid systems."Phys. Rev. E,54:5041-5052(1996)
    [18] A. Dupuis, J.M. Yeomans, ``Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces." Future Gener. Comput. Syst. 20 (2004) 9931001.
    [19] A Gunstensen, D. Rothman, S. Zaleski, and G. Zanetti.\ Lattice Boltzmann model of immiscible fluids, " Phys. Rev. A, 43:4320-4327,(1991).
    [20] D. Rothman and J. Keller.\ Immiscible cellular-automaton fluids " J. Stat.
    Phys., 52(3-4):1119-1127,(1988).
    [21] X. Shan and H. Chen`` Lattice Boltzmann model for simulating flows with multiple phases and components. " Phys. Rev. E, 47:1815-1819,(1993).
    [22] Shan, X., and Chen, H., "Simulation of Nonideal Gases and Liquid-GasPhase Transitions by the Lattice Boltzmann Equation," Phys. Rev. E, 49, pp. 2941-
    2948.(1994)
    [23] Shan, X., and Doolen, G. D., "Multicomponent Lattice-Boltzmann Model With Interparticle Interaction," J. Stat. Phys., 81, pp. 379-393.(1995)
    [24] Yang, Z. L., Palm, B., and sehgal, B. R.,"Numerical simulation of bubbly two-phase flow in a narrow channel,"International Journal of Heat and Mass
    Transfer , vol. 45, No. 3,pp. 631-639, (2002)
    [25] Jonathan, Chin, Edo, S. Boek and Peter. V. Coveney,"Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model," The Royal society,
    10.1098/rsta.2001.0953(2002)
    [26] Sukop ,M.C.,and Or, D., "Invasion percolation of single component, multiphase fluids with Lattice Boltzmann models,"Physica B,Vol.338 No.1-4,pp.298-
    303,(2003)
    [27] Nourgaliev, R. R.; Dinh, T. N. and Sehgal, B. R.,"On lattice Boltzmann modeling of phase transitions in an isothermal non-ideal fluid, "Nucl. Engng. Des., 211, 153.(2002)
    [28] Nourgaliev, R. R.; Dinh, T. N.; Theofanous T. G. and Joseph D., "The lattice Boltzmann equation method: theoretical interpretation, numerics and
    implications, "Int. J. Multiphase Flow, 29, 117.(2003)
    [29] Nie, X.; Qian, Y.-H.; Doolen, Gary D. and Chen, S.," Lattice Boltzmann simulation of the two-dimensional Rayleigh-Taylor instability, "Phys. Rev. E,
    58(5), 68 (1998)
    [30] Takada, N.; Misawa, M.; Tomiyama, A. and Hosokawa, S., "Simulation of bubble motion under gravity by lattice Boltzmann method, "J. Nucl. Sci.
    Technol., 38(5), 330. (2001)
    [31] Lamura, A.; Gonnella, G. and Yeomans, J. M., "A lattice Boltzmann model of ternary fluid mixtures, "Europhys. Lett., 99,314.(1999)
    [32] X. He, X. Shan, G.D. Doolen, "A discrete Boltzmann equation model for nonideal gases, " Phys. Rev. E 57 R13 (1998)
    [33] X. He, L. Luo, "A discrete Boltzmann equation model for non-ideal gases, " Phys. Rev. E 55 R6333 (1997)
    [34] S. Teng, Y. Chen, H. Ohashi, "Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing artificial compression scheme, "Int. J. Heat Fluid Flow 21 112V121 (2000)
    [35] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, "A lattice Boltzmann method for incompressible two-phase flows with large density differences, "J. Comput.
    Phys. 198 628. (2004)
    [36] T. Lee, C.-L. Lin, "A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, "J. Comput.
    Phys. 206 16V47.(2005)
    [37] X. He, S. Chen, R. Zhang, "A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, "J. Comput. Phys. 152 (2) 642V663. (1999)
    [38] D. Jamet, O. Lebaigue, N. Coutris, J.M. Delhaye, ``The second gradient method for the direct numerical simulation of liquid vapor flows with phase change,"
    J. Comput. Phys. 169 (2001) 624V651.
    [39] H. W. Zheng, C. Shu, Y. T. Chew, ``A lattice Boltzmann model for multiphase flows with large density ratio " JCP, Phys, 218 353V371 (2006)
    [40] A. Lamuro, S. Succi, ``A Lattice Boltzmann for disordered fluids, " Int. J. Mod. Phys . B17 145-148 (2003)
    [41] Deng Bin, Shi Bao-Chang, Wang Guang-Chao, "A New Lattice Bhatnagar-Gross-Krook model for the convection-Diffusion Equation with a Source Term" Chin. Phys . Lett. Vol. 22, NO.2 267 (2005).
    [42] Tamas I. Gombosi, ``Gas kinetic theorym," Cambridge University Press, (1994).
    [43] X. He, and L. S. Luo, ``Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation," Phys. Rev. E 56,
    6811-6817 (1997).
    [44] D. A. Wolf-Gladrow, ``Lattice-gas cellular automata and lattice Boltzmann models - an introduction," Springer, Lecture Notes in Mathematics, p.159, (2000).
    [45] J.S. Rowlinson, B. Widom, ``Molecular Theory of Capillarity, Clarendon, "Oxford, (1989).
    [46] V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.-C. Desplat, P. Bladon, ``Inertial ffects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study, "J. Fluid Mech. 440 147V203.
    (2001).
    [47] V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.-C. Desplat, P. Bladon, ``Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study", J. Fluid Mech. 440 (2001).
    [48] H. W. Zheng, C. Shu, Y. T. Chew, ``Lattice Boltzmann interface capturing method for imcompressible, " Phys, Rev, E72, 056705 (2005).
    [49] D. Jacqmin, ``Calculation of two-phase Navier-Stokes flows using phase-field modeling, " J. Comput. Phys. 155 96V127. (1999).
    [50] Z. Guo, C. Zhen, B. Shi, ``Discrete lattice effects on the forcing term in the lattice Boltzmann method, " Phys. Rev. E 65 (4) ,046308.(2002).
    [51] C. Cheng ``Curved boundary techniques in lattice Boltzmann method to simulate complex geometry flows, " , master thesis, National Tsing Hua University, Taiwan, (2007).
    [52] J. W. Cahn, ``Critical point wetting." J. Chem. Phys. 66, 3667-3672 (1977).
    [53] D. Iwahara, H. Shinto, M. Miyahara, and K. Higashitani, `` Liquid Drops on Homogeneous and Chemically Heterogeneous Surfaces: A Two-Dimensional Lattice Boltzmann Study," Langmuir, 19 (21), 9086 -9093 (2003).
    [54] R.G.M. van der Sman, ``Multiphase flow," 2008
    [55] J. J. Huang, C. Shu, Y. T. Chew, H. W. Zheng, ``Numerical Study of 2d Multiphase Flows Over Grooved Surface by Lattice Boltzmann Method," Int.
    J. Mod. Phys C Vol. 18, No. 4 (2007) 492-500.
    [56] J. J. Huang, C. Shu and Y. T. Chew, ``Numerical investigation of transporting droplets by spatiotemporally controlling substrate wettability," Journal of Colloid and Interface Science,328,124-133 (2008).
    [57] Y.Y. Yan, Y.Q. Zu, ``lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio," J. Comput. Phys., 227, 763775 (2007).
    [58] M.G. Lippman, ``Relations entre les phenom`enes electriques et capillaires," Ann. Chim. Phys. 5, 494-459, (1875).
    [59] W. H. Hsieh, J. H. Chen, ``Lens-Profile Control by Electrowetting Fabrication Technique," IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO.3 (2005)
    [60] B. Berge, ``Electrocapillarite et mouillage de films isolants par l'eau," C. R. Acad. Sci. II, 317-157 (1993).
    [61] S. K. Cho, H. Moon, and C.-J. Kim, ``Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital micro fluidic circuits," J. Microelectromech. Syst., vol. 12, no. 1, pp. 70 80 (2003).
    [62] J. Zeng and T. Korsmeyer, ``Principles of droplet electrohydrodynamics for lab-on-a-chip," Lab Chip, vol. 4, no. 4, pp. 265-277 (2004).
    [63] B, Berge and J. Peseux, ``Variable focal lens controlled by an external voltage: an application of electrowetting," Eur. Phys. J. E 3 159 (2000).
    [64] S. Kuiper and B. H. W. Hendriks, ``Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85 1128 (2004).
    [65] R. A. Hayes and B. J. Feenstra, ``Video-speed electronic paper based on electrowetting," Nature, 425-383 (2003).
    [66] Q.M. Chang, J.I.D. Alexander, ``Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method," Micro fluid. Nano fluid. 2 309-326 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE