簡易檢索 / 詳目顯示

研究生: 潘宜欣
Pan, Yi-Hsin
論文名稱: Biodistribution and Preliminary Peptide Receptor Radionuclide Therapy of 131I- E[c(RGDyK)]2 in subcutaneous ALTS1C1 and GL261 glioma animal model
131I- E[c(RGDyK)]2 於ALTS1C1 及GL261 等皮下神經膠質瘤動物模式下之生物分佈與初步胜肽受體放射性核種治療之研究
指導教授: 羅建苗
Lo, Jem-Mau
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 60
中文關鍵詞: 神經膠質瘤初步胜肽受體放射性核種治療
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在腫瘤血管新生(angiogenesis)之過程中,內皮細胞形成新的微血管時,會表現細胞黏著分子(cell adhesion molecules),通稱為整合素(integrin)。惡性神經膠質瘤(glioblastoma multiforme)細胞生長期會大量表現一種稱為αvβ3之整合素(密度達(1.28±0.46)×105 receptors/cell)。αvβ3整合素已被充分證實可被細胞外基質中一特定胺基酸序列Arg-Gly-Asp(RGD)所辨識。本研究為藉此RGD專一標靶特性,製備一種主動標靶之放射免疫治療試劑131I- E[c(RGDyK)]2,並對具有高腫瘤血管新生表現之惡性神經膠質瘤動物模式進行放射免疫治療之療效評估。
    方法:以iodogen方法將放射性核種I-131標誌於E[c(RGDyK)]2上。利用nanoSPECT/CT造影以及腫瘤組織切片試驗,確認於神經膠質瘤動物模式中,131I-E[c(RGDyK)]2能確實利用其主動標靶之特性達到長時間停留於腫瘤中。進一步以生物分佈試驗以及輻射劑量運算評估131I-E[c(RGDyK)]2之治療潛力。最後,於神經膠質瘤動物模式中,進行單次劑量及分次劑量131I-E[c(RGDyK)]2之放射免疫治療,同時以組織病理學分析確定131I-E[c(RGDyK)]2之放射治療結果。
    結果:本實驗所合成之131I-E[c(RGDyK)]2,能於大鼠血清中達到90%以上之穩定度。於nanoSPECT/CT造影、放射自動顯影(autoradiography) 、活體外及活體內生物分佈試驗結果中,均能相互呼應並顯示出於神經膠質瘤腫瘤中,131I-E[c(RGDyK)]2之累積約為3 %ID/g (注射後30分鐘)、最高T/N (tumor to normal tissue ratio)值為8∼13出現於注射後24小時。於皮下神經膠質瘤動物模式之放射免疫治療試驗中,給予放射藥物治療之動物與未治療組呈現統計上之差異,腫瘤生長抑制之結果顯示於給藥後第十天分次劑量組別與單次劑量達到統計學上之差異。最後於免疫組織化學分析結果中,發現131I-E[c(RGDyK)]2能降低腫瘤細胞間之血管密度,顯示放射免疫治療之功效。
    結論:本研究初步成功地呈現131I-E[c(RGDyK)]2於皮下神經膠質瘤動物模式之放射免疫治療效果,未來將進一步於原位惡性神經膠質瘤動物模式中探討惡性神經膠質瘤動物模式之抑制效果。


    摘要 1 Abstract 5 CHAPTER 1. Introduction 10 I.Glioblastoma Multiforme 10 II.αVβ3 Integrin Targeting of Tumor Angiogenesis in Glioblastoma Multiforme 11 III.αVβ3 Integrin-Targeting Peptides 13 IV.Peptide Receptor Targeting Therapy for Glioblastoma Multiforme 15 V.Strategy and Goal of the Study 17 CHAPTER 2. Materials and Methods 18 I.Radiochemistry of 131I-E[c(RGDyK)]2 18 II.Animal model 20 III.Biodistribution of 131I- E[c(RGDyK)]2 22 IV.Radiation dosimetry extrapolation to humans 23 V.Autoradiography 23 VI.Histopathologic processing 24 VII.Static animal SPECT imaging and imaging analysis 25 VIII.Radionuclide therapy of 131I- E[c(RGDyK)]2 27 IX.Statistical analysis 27 CHAPTER 3. Results 28 I.Radiochemistry of 131I-E[c(RGDyK)]2 28 II.Pilot study 31 III.Biodistribution of 131I-E[c(RGDyK)]2 34 IV.Radiation Dosimetry 39 V.Radionuclide therapy of 131I-E[c(RGDyK)]2 40 VI.The orthotopic SPECT/CT Imaging 48 CHAPTER 4. Discussion 51 CHAPTER 5. Conclusion 55 References 56 Supplement 59

    1.Lipsitz, D., et al., Glioblastoma multiforme: clinical findings, magnetic resonance imaging, and pathology in five dogs. Vet Pathol, 2003. 40(6): p. 659-69.
    2.Stark, A.M., et al., Glioblastoma multiforme-report of 267 cases treated at a single institution. Surg Neurol, 2005. 63(2): p. 162-9; discussion 169.
    3.Nakada, M., et al., Molecular targets of glioma invasion. Cell Mol Life Sci, 2007. 64(4): p. 458-78.
    4.Hou, L.C., et al., Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurg Focus, 2006. 20(4): p. E5.
    5.Bello, L., et al., Angiogenesis and invasion in gliomas. Cancer Treat Res, 2004. 117: p. 263-84.
    6.Brem, S., The role of vascular proliferation in the growth of brain tumors. Clin Neurosurg, 1976. 23: p. 440-53.
    7.Ferrara, N., Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res, 2000. 55: p. 15-35; discussion 35-6.
    8.Bergers, G. and L.E. Benjamin, Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003. 3(6): p. 401-10.
    9.Brem, S., R. Cotran, and J. Folkman, Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst, 1972. 48(2): p. 347-56.
    10.Zagzag, D., M. Goldenberg, and S. Brem, Angiogenesis and blood-brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain-tumor model. AJR Am J Roentgenol, 1989. 153(1): p. 141-6.
    11.Wong, M.L., et al., Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci, 2009. 16(9): p. 1119-30.
    12.Brooks, P.C., et al., Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 1994. 79(7): p. 1157-64.
    13.Ruoslahti, E. and M.D. Pierschbacher, New perspectives in cell adhesion: RGD and integrins. Science, 1987. 238(4826): p. 491-7.
    14.Aumailley, M., et al., Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett, 1991. 291(1): p. 50-4.
    15.Bradley, D.A., et al., Cilengitide (EMD 121974, NSC 707544) in asymptomatic metastatic castration resistant prostate cancer patients: a randomized phase II trial by the prostate cancer clinical trials consortium. Invest New Drugs, 2010.
    16.Fine, H.A., et al., Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J Clin Oncol, 2003. 21(12): p. 2299-304.
    17.Delbaldo, C., et al., Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against alphavbeta3 integrin receptor, in patients with advanced solid tumors. Invest New Drugs, 2008. 26(1): p. 35-43.
    18.Morokoff, A.P. and U. Novak, Targeted therapy for malignant gliomas. J Clin Neurosci, 2004. 11(8): p. 807-18.
    19.Brooks, P.C., Role of integrins in angiogenesis. Eur J Cancer, 1996. 32A(14): p. 2423-9.
    20.Desgrosellier, J.S. and D.A. Cheresh, Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 2010. 10(1): p. 9-22.
    21.Gurrath, M., et al., Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides. Eur J Biochem, 1992. 210(3): p. 911-21.
    22.van Hagen, P.M., et al., Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int J Cancer, 2000. 90(4): p. 186-98.
    23.Chen, X., et al., MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem, 2004. 15(1): p. 41-9.
    24.Beer, A.J., et al., Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res, 2006. 12(13): p. 3942-9.
    25.Beer, A.J., et al., PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha v beta3 expression. J Nucl Med, 2006. 47(5): p. 763-9.
    26.Dijkgraaf, I., et al., Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging, 2007. 34(2): p. 267-73.
    27.Dijkgraaf, I., et al., Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem, 2007. 5(6): p. 935-44.
    28.Hockaday, D.C., et al., Imaging glioma extent with 131I-TM-601. J Nucl Med, 2005. 46(4): p. 580-6.
    29.Mamelak, A.N., et al., Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol, 2006. 24(22): p. 3644-50.
    30.Yoshimoto, M., et al., alpha(v)beta(3) Integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer, 2008. 123(3): p. 709-15.
    31.Leonard, J.P., J.A. Siegel, and S.J. Goldsmith, Comparative physical and pharmacologic characteristics of iodine-131 and yttrium-90: implications for radioimmunotherapy for patients with non-Hodgkin's lymphoma. Cancer Invest, 2003. 21(2): p. 241-52.
    32.Lin, K.J., et al., Improved hepatocyte function of future liver remnant of cirrhotic rats after portal vein ligation: a bonus other than volume shifting. Surgery, 2009. 145(2): p. 202-11.
    33.Molina-Trinidad, E.M., et al., Radiopharmacokinetic and dosimetric parameters of 188Re-lanreotide in athymic mice with induced human cancer tumors. Int J Pharm, 2006. 310(1-2): p. 125-30.
    34.Stabin, M.G., Fundamentals of nuclear medicine dosimetry. シュプリンガー・ジャパン株式会社 ed. 2008.
    35.Bentel, G.C., Treatment Planning and Dose Calculation in Radiation Oncology 4th edition (December 1, 1989) ed: McGraw Hill Higher Education.
    36.Janssen, M.L., et al., Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res, 2002. 62(21): p. 6146-51.
    37.Shen, S., et al., Radiation dosimetry of 131I-chlorotoxin for targeted radiotherapy in glioma-bearing mice. J Neurooncol, 2005. 71(2): p. 113-9.
    38.Reynolds, A.R., et al., Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med, 2009. 15(4): p. 392-400.
    39.Weis, S.M., D.G. Stupack, and D.A. Cheresh, Agonizing integrin antagonists? Cancer Cell, 2009. 15(5): p. 359-61.
    40.Abdollahi, A., et al., Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res, 2005. 11(17): p. 6270-9.
    41.Hsu, A.R., et al., In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model. Mol Imaging Biol, 2006. 8(6): p. 315-23.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE