簡易檢索 / 詳目顯示

研究生: 巫翔裘
Wu, Hsiang-Chiu
論文名稱: 研發透明多層微流道系統並整合微電極陣列以用於研究生物細胞的形態和電生理
The Development of Transparent Multilayer Microfluidic Systems Integrated with Microelectrode Arrays for Studying Both Morphology and Electrophysiology of Biological Cells
指導教授: 陳新
Chen, Hsin
口試委員: 林哲信
Lin, Che-Hsin
楊雅棠
Yang, Ya-Tang
林致廷
Lin, Chih-Ting
葉世榮
Yeh, Shin-Rung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 130
中文關鍵詞: 多層微流道系統生物細胞透明多層微流道系統微電極陣列電生理形態生物相容性海馬迴細胞微流道細胞培養斑馬魚心肌信號光阻正光阻負光阻黃光製程顯影劑微型分析系統神經元細胞紅血球細胞透明電極微流體氧化銦錫導電玻璃
外文關鍵詞: biological cells, microlab systems, neuronal networks, AZ, bio-compatible
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨者半導體與微加工技術的進步,讓多種化學與生物的實驗流程整合單一
    微型晶片上,相較於傳統的生化或生物分析,這種整合型具分析功能的晶
    片或微型分析系統(Micro Total Analysis Systems, μTAS),僅需要
    非常微小的液量即可平行處理大量的樣品與快速的分析,因此可以讓人們
    得以更有效率的進行分子和細胞生物學研究;在這些微型分析系統中,細
    胞和生物分子需藉流體進行混合或是輸送才得以進行相關的分析或是作
    用,因此微流體在微型晶片系統中扮演非常重要的角色;傳統上利用微型
    晶片系統是希望可以縮短檢測時間及費用,但是對於研究神經元系統的生
    物學家而言,需要同時觀察神經元細胞的生長狀況及電生理訊號,進而了
    解神經元網絡對於外來刺激的反應及生長狀況,然而目前可以同時進行活
    細胞型態與電生理長期紀錄研究的微型晶片系統非常少;因此,本論文係
    提出兩種結合光阻與氧化銦錫導電玻璃基板,製作可以同時進行型態觀察
    及電生理訊號紀錄的多層微流道結構系統;其中一種係利用控制曝光時
    間,決定每一層光阻固化的深度製作出多層結構,另外一種係利用犧牲
    層的方法定義底層的結構,這兩種微流道系統皆具有導引及固定活細胞
    在ITO電極的功能,並可同時對活細胞進行電生理訊號的紀錄及刺激;另
    外,因為ITO玻璃基板是透明的,所以在進行電生理的研究同時,也可以
    同步進行細胞型態的觀察。最後,透過斑馬魚紅血球與神經細胞的實驗,
    說明所提出的設計結構有效的捕獲細胞並固定在ITO電極上,並且讓神經
    細胞存活在光阻上至少14天證明其生物相容性,因此,證明所提出利用
    光阻與ITO電極製作的多層結構的微流道系統,可以進行長時間的活細胞
    培養,並可以同時進行型態觀察及電生理信號研究。


    Contemporary semiconductor and micromachining technologies
    have been exploited to develop lab-on-a-chip microsystems, which
    enable parallel and efficient experiments in molecular and cellular biology. In these microlab systems, microfluidics play an important role for automatic transportation or immobilization of cells and bio-molecules, as well as for separation or mixing of different chemical reagents. However, seldom microlab systems allow both morphology and electrophysiology of living cells to be studied simultaneously for a long term. This kind of study is important, for example, for understanding how neuronal networks
    grow in response to environmental stimuli. To fulfill this application need, this thesis investigates the possibility of fabricating multi-layer photoresists as microfluidic systems directly above a glass substrate with ITO electrodes. The microfluidic channels are designed to guide and trap living cells on top of ITO electrodes, through which the electrical activities of cells can be recorded or elicited. As both the microfluidic system and ITO electrodes are transparent, the cellular morphology is observable easily during electrophysiological studies. Two fabrication processes are proposed and compared. One defines the structure and curing depth of each photoresist layer simply by controlling the exposure time in lithography, while the other further utilizes a sacrificial layer to defines the structure of the bottom layer. The fabricated microfluidic system is proved bio-compatible and able to trap blood cells or neurons. Therefore, the proposed microsystem will be useful for studying cultured living cells efficiently in applications such as drug-screening.

    Contents v List of Figures ix List of Tables xxi 1 Introduction 1 1.1 Motivation and Objective 4 1.2 Approach 5 1.3 Contribution 5 1.4 Chapter Organization 6 2 Literature Review 9 2.1 Review on Surface Modification for Biological Cells .. 10 2.2 Review on Microelectrode Array for Studying Biological Cells 18 2.3 Review on Trapping and Guiding for Biological Cells 26 2.4 SU-8 Multilayer Microfluidic System Fabrication Process 32 2.5 Summary 41 3 Materials and Method 45 3.1 Indium-Tin-Oxide Microelectrode Arrays . . . . . . . 45 3.2 Materials and Methods for Fabricating Multilayer Microfluidic Systems 49 3.3 Preparation of Zebrafish Heart and Blood 53 3.4 Preparation and Culturing of Neurons 54 4 Fabrication and Characterization of Indium-Tin-Oxide Microlectrodes and SU-8 Photoresists 57 4.1 Electrical Characteristics of Indium-Tin-Oxide Microelectrodes 58 4.2 Verification on Fabrication Parameters of SU-8 Photoresist . . . 61 4.3 Summary 64 5 The Multilayer Microfluidic System with Grid-interconnection Chan- nels 65 5.1 Design Concepts and Considerations. . . . . . . . . . . 65 5.2 Fabrication Process of Microfluidic System with Grid-interconnection Channels . .. . . . . . . . . . . . . . . . . . 73 5.3 Structural and Functional Examination of Microfluidic System with Grid-interconnection Channels .. . . . . . . . . . 76 5.4 Summary and Discussion . . . . . . . . . . . . . . 80 6 The Multilayer Microfluidic System with a Free-interconnection Cavity 81 6.1 The Design Concepts and Considerations . . . . . . . . 81 6.2 Fabrication Process of the Microfluidic System with Free-interconnection Cavity . . . . . . . . . . . .. . . . . . . . 84 6.3 Structural and Functional Examination. . . . . . . . . 90 6.4 Biological Cells Experiments. . . . . . . . . . . . . . 94 6.4.1 Experiment with Zebrafish Blood . . . . . . . . . . . 94 6.4.2 Experiment with Neurons . . . . . . . . . . . . . . . 94 6.5 Summary and Discussion . . . . . . . . . . . . . . . 98 7 Conclusion and Future Work 101 7.1 Conclusion 101 7.2 Future Work 102 A The Affidavit of Approval of Animal Use Protocol 103 B The Electrical Characteristics of the Indium-Tin-Oxide Electrode Ar- rays with Sine Wave 105 B.1 Summary .. . . . . . . . . . . 114 C The Interface Modeling and Simulation for the Indium-Tin-Oxide Electrode Arrays in Buffer Solution 117 References 121

    [1] M. Jungblut, W. Knoll, C. Thielemann, and M. Pottek, “Triangular neu- ronal networks on microelectrode arrays: an approach to improve the properties of low-density networks for extracellular recording,” Biomedical microdevices, vol. 11, no. 6, p. 1269, 2009.

    [2] P. CLARK12 and D. WILKINSON, “Topographical control of cell be- haviour: Ii. Multiple grooved substrata,” Development, vol. 108, pp. 635–
    644, 1990.

    [3] A. Curtis and C. Wilkinson, “Topographical control of cells,” Biomaterials, vol. 18, no. 24, pp. 1573–1583, 1997.

    [4] D. Teare, N. Emmison, C. Ton-That, and R. Bradley, “Cellular attachment to ultraviolet ozone modified polystyrene surfaces,” Langmuir, vol. 16, no. 6, pp. 2818–2824, 2000.

    [5] C. Yi, C.-W. Li, S. Ji, and M. Yang, “Microfluidics technology for manipulation and analysis of biological cells,” Analytica Chimica Acta, vol. 560, no. 1, pp. 1–23, 2006.

    [6] D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in mi- crofluidic systems,” Analytical and Bioanalytical chemistry, vol. 397, no. 8, pp. 3249–3267, 2010.

    [7] S. Chang, C. Chang, J. Lin, S. Lu, Y. Lee, S. Yeh, and H. Chen, “Die-level, post-cmos processes for fabricating open-gate, field-effect biosensor arrays with on-chip circuitry,” Journal of Micromechanics and Microengineering, vol. 18, no. 11, p. 115032, 2008.

    [8] B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl, P. Fromherz, M. Merz, M. Brenner, M. Schreiter, et al., “A 128×128 cmos biosensor array for extracellular recording of neural activity,” IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2306–2317, 2003.

    [9] S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” Journal of neuroscience methods, vol. 160, no. 2, pp. 317–326, 2007.

    [10] Y. Nam, K. Musick, and B. C. Wheeler, “Application of a pdms microsten- cil as a replaceable insulator toward a single-use planar microelectrode array,” Biomedical Microdevices, vol. 8, no. 4, pp. 375–381, 2006.

    [11] G. Zeck and P. Fromherz, “Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip,” Proceedings of the National Academy of Sciences, vol. 98, no. 18, pp.
    10 457–10 462, 2001.

    [12] M. Yang, C.-W. Li, and J. Yang, “Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device,” Analytical chemistry, vol. 74, no. 16, pp. 3991–4001, 2002.

    [13] D. Di Carlo, N. Aghdam, and L. P. Lee, “Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays,” Analytical chemistry, vol. 78, no. 14, pp. 4925–4930, 2006.
    [14] M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Mono- lithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, no. 5463, pp. 113–116, 2000.
    [15] Y. Xia and G. M. Whitesides, “Soft lithography,” Annual review of materials science, vol. 28, no. 1, pp. 153–184, 1998.

    [16] P. Abgrall, C. Lattes, X. Dollat, et al., “A novel fabrication method of flexible and monolithic 3d microfluidic structures using lamination of su-8 films,” Journal of Micromechanics and Microengineering, vol. 16, no. 1, p. 113, 2005.

    [17] F. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. Arroyo, J. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embed- ded su-8 microchannels fabricated using a low temperature full wafer ad- hesive bonding,” Journal of Micromechanics and Microengineering, vol. 14, no. 7, p. 1047, 2004.

    [18] M.-C. Lo and Y.-C. Chang, “Development of artificial neuronal network device,” Mater thesis, pp. 1–57, 2013.

    [19] S. Herculano-Houzel, “The human brain in numbers: a linearly scaled- up primate brain,” Frontiers in human neuroscience, vol. 3, p. 31, 2009.

    [20] F. A. Edwards, A. Konnerth, and B. Sakmann, “Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study.” The Journal of Physiology, vol. 430, p. 213,
    1990.

    [21] J. Whitson, D. Kubota, K. Shimono, Y. Jia, and M. Taketani, “Multi- electrode arrays: enhancing traditional methods and enabling network physiology,” in Advances in Network Electrophysiology. Springer, 2006, pp. 38–68.

    [22] C. Thomas, P. Springer, G. Loeb, Y. Berwald-Netter, and L. Okun, “A miniature microelectrode array to monitor the bioelectric activity of cultured cells,” Experimental cell research, vol. 74, no. 1, pp. 61–66, 1972.

    [23] G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annual review of biomedical engineering, vol. 3, no. 1, pp. 335–373, 2001.
    [24] E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: applications in materials science,” Journal of the American Chemical Society, vol. 118, no. 24, pp. 5722–5731, 1996.

    [25] B. A. Langowski and K. E. Uhrich, “Oxygen plasma-treatment effects on si transfer,” Langmuir, vol. 21, no. 14, pp. 6366–6372, 2005.

    [26] D. Teare, N. Emmison, C. Ton-That, and R. Bradley, “Cellular attachment to ultraviolet ozone modified polystyrene surfaces,” Langmuir, vol. 16, no. 6, pp. 2818–2824, 2000.

    [27] L. Shui, J. C. Eijkel, and A. van den Berg, “Multiphase flow in microfluidic systems–control and applications of droplets and interfaces,” Advances in colloid and interface science, vol. 133, no. 1, pp. 35–49, 2007.

    [28] Y. Vlasov, “Ion-selective field-effect transistors (isfet)-new type of electrodes for chemical-analysis and biomedical-research,” JOURNAL OF APPLIED CHEMISTRY OF THE USSR, vol. 52, no. 1, pp. 1–13, 1979.

    [29] B. McKinley, J. Saffle, W. Jordan, J. Janata, S. Moss, and D. R. Westenskow, “In vivo continuous monitoring of k+ in animals using isfet probes.” Medical instrumentation, vol. 14, no. 2, pp. 93–97, 1979.

    [30] I. Burdallo, C. Jimenez-Jorquera, C. Fernández-Sánchez, and A. Baldi, “Integration of microelectronic chips in microfluidic systems on printed circuit board,” Journal of Micromechanics and Microengineering, vol. 22, no. 10, p. 105022, 2012.

    [31] D. Lee and T. Cui, “An electric detection of immunoglobulin g in the enzyme-linked immunosorbent assay using an indium oxide nanoparticle ion-sensitive field-effect transistor,” Journal of Micromechanics and Microengineering, vol. 22, no. 1, p. 015009, 2011.

    [32] P. Fromherz and C. Müller, “Cable properties of a straight neurite of a leech neuron probed by a voltage-sensitive dye,” Proceedings of the National Academy of Sciences, vol. 91, no. 10, pp. 4604–4608, 1994.
    [33] P. Fromherz and T. Vetter, “Cable properties of arborized retzius cells of the leech in culture as probed by a voltage-sensitive dye,” Proceedings of the National Academy of Sciences, vol. 89, no. 6, pp. 2041–2045, 1992.

    [34] D. Gandolfi, J. Mapelli, and E. D’Angelo, “Long-term spatiotemporal reconfiguration of neuronal activity revealed by voltage-sensitive dye imaging in the cerebellar granular layer,” Neural plasticity, vol. 2015, 2015.

    [35] A. Grinvald, W. N. Ross, and I. Farber, “Simultaneous optical measure- ments of electrical activity from multiple sites on processes of cultured neurons,” Proceedings of the National Academy of Sciences, vol. 78, no. 5, pp.
    3245–3249, 1981.

    [36] J. Buitenweg, W. Rutten, E. Marani, S. Polman, and J. Ursum, “Extra- cellular detection of active membrane currents in the neuron–electrode interface,” Journal of neuroscience methods, vol. 115, no. 2, pp. 211–221,
    2002.

    [37] R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, et al., “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18
    µm cmos chip,” Lab on a Chip, vol. 12, no. 7, pp. 1274–1280, 2012.

    [38] K. Musick, D. Khatami, and B. C. Wheeler, “Three-dimensional micro- electrode array for recording dissociated neuronal cultures,” Lab on a Chip, vol. 9, no. 14, pp. 2036–2042, 2009.

    [39] E. Ghafar-Zadeh, M. Sawan, and D. Therriault, “CMOS based capacitive sensor laboratory-on-chip: a multidisciplinary approach,” Analog Integrated Circuits and Signal Processing, vol. 59, no. 1, pp. 1–12, 2009.

    [40] S.-R. Chang and H. Chen, “A cmos-compatible, low-noise isfet based on high efficiency ion-modulated lateral-bipolar conduction,” Sensors, vol. 9, no. 10, pp. 8336–8348, 2009.

    [41] Y.-s. Torisawa, T. Kaya, Y. Takii, D. Oyamatsu, M. Nishizawa, and T. Mat- sue, “Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures,” Analytical chemistry, vol. 75, no. 9, pp. 2154–2158, 2003.

    [42] Y.-s. Torisawa, H. Shiku, T. Yasukawa, M. Nishizawa, and T. Matsue, “Three-dimensional micro-culture system with a silicon-based cell array device for multi-channel drug sensitivity test,” Sensors and Actuators B: Chemical, vol. 108, no. 1, pp. 654–659, 2005.

    [43] S. Halldorsson, E. Lucumi, R. Gómez-Sjöberg, and R. M. Fleming, “Advantages and challenges of microfluidic cell culture in polydimethylsilox- ane devices,” Biosensors and Bioelectronics, vol. 63, pp. 218–231, 2015.

    [44] J. M. Jang, J. Lee, H. Kim, N. L. Jeon, and W. Jung, “One-photon and two- photon stimulation of neurons in a microfluidic culture system,” Lab on a Chip, vol. 16, no. 9, pp. 1684–1690, 2016.

    [45] A. Nakajima, H. Kimura, Y. Sawadsaringkarn, Y. Maezawa, T. Kobayashi, T. Noda, K. Sasagawa, T. Tokuda, Y. Ishikawa, S. Shiosaka, et al., “Cmos image sensor integrated with micro-led and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue,” Optics express, vol. 20, no. 6, pp. 6097–6108, 2012.

    [46] G. Lignani, E. Ferrea, F. Difato, E. Ferroni, S. Espinoza, R. R. Gainet- dinov, P. Baldelli, F. Benfenati, et al., “Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity,” Frontiers in molecular neuroscience, vol. 6, p. 22, 2013.

    [47] J. L. Novak and B. C. Wheeler, “Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array,” Journal of neuroscience methods, vol. 23, no. 2, pp. 149–159, 1988.

    [48] K.-J. Jang, M. S. Kim, D. Feltrin, N. L. Jeon, K.-Y. Suh, and O. Pertz, “Two distinct filopodia populations at the growth cone allow to sense Nano-topographical extracellular matrix cues to guide neurite outgrowth,” PloS one, vol. 5, no. 12, p. e15966, 2010.

    [49] I. Suzuki, Y. Sugio, H. Moriguchi, Y. Jimbo, and K. Yasuda, “Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture,” Journal of nanobiotechnology, vol. 2, no. 1, p. 7, 2004.

    [50] M. Scholl, C. Sprössler, M. Denyer, M. Krause, K. Nakajima, A. Maelicke, W. Knoll, and A. Offenhäusser, “Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces,” Journal of neuroscience methods, vol. 104, no. 1, pp. 65–75, 2000.

    [51] Y. Choi, A. K. Yagati, and S. Cho, “Electrochemical characterization of poly-l-lysine coating on indium tin oxide electrode for enhancing cell adhesion,” Journal of nanoscience and nanotechnology, vol. 15, no. 10, pp.7881–7885, 2015.

    [52] J. R. Rettig and A. Folch, “Large-scale single-cell trapping and imaging using microwell arrays,” Analytical chemistry, vol. 77, no. 17, pp. 5628–5634, 2005.

    [53] C.-W. Huang and G.-B. Lee, “A microfluidic system for automatic cell culture,” Journal of micromechanics and microengineering, vol. 17, no. 7, p. 1266, 2007.

    [54] G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, no. 7101, pp. 368–373, 2006.

    [55] P. Thiébaud, L. Lauer, W. Knoll, and A. Offenhäusser, “Pdms device for patterned application of microfluids to neuronal cells arranged by microcontact printing,” Biosensors and bioelectronics, vol. 17, no. 1, pp. 87–93, 2002.

    [56] C. Liu, “Recent developments in polymer mems,” Advanced Materials, vol. 19, no. 22, pp. 3783–3790, 2007.

    [57] S. Brittain, K. Paul, X.-M. Zhao, and G. Whitesides, “Soft lithography and microfabrication,” Physics World, vol. 11, no. 5, p. 31, 1998.

    [58] S. J. Clarson and J. A. Semlyen, Siloxane polymers. Prentice Hall, 1993.

    [59] M. W. Toepke and D. J. Beebe, “Pdms absorption of small molecules and consequences in microfluidic applications,” Lab on a Chip, vol. 6, no. 12, pp. 1484–1486, 2006.

    [60] E. Verpoorte and N. De Rooij, “Microfluidics meets mems,” Proceedings of the IEEE, vol. 91, no. 6, pp. 930–953, 2003.

    [61] C. Chung and M. Allen, “Uncrosslinked su-8 as a sacrificial material,” Journal of Micromechanics and Microengineering, vol. 15, no. 1, p. N1, 2004.

    [62] Z. Cui and R. A. Lawes, “A new sacrificial layer process for the fabri- cation of micromechanical systems,” Journal of Micromechanics and Micro- engineering, vol. 7, no. 3, p. 128, 1997.

    [63] K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of su-8 biocompatibility,” Materials Science and Engineering: C, vol. 33, no. 7, pp. 4453–4459, 2013.

    [64] S.-H. Cho, H. M. Lu, L. Cauller, M. I. Romero-Ortega, J.-B. Lee, and G. A. Hughes, “Biocompatible su-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers,” IEEE Sensors Journal, vol. 8, no. 11, pp. 1830–1836, 2008.

    [65] P. Abgrall, V. Conedera, H. Camon, A.-M. Gue, and N.-T. Nguyen, “Su-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis, vol. 28, no. 24, pp. 4539–4551, 2007.

    [66] Y.-K. Yoon, J.-W. Park, and M. G. Allen, “Polymer-core conductor ap- proaches for rf mems,” Journal of microelectromechanical systems, vol. 14, no. 5, pp. 886–894, 2005.

    [67] F. Ceyssens and R. Puers, “Creating multi-layered structures with free-standing parts in su-8,” Journal of Micromechanics and Microengineering, vol. 16, no. 6, p. S19, 2006.

    [68] A. Mata, A. J. Fleischman, and S. Roy, “Fabrication of multi-layer su-8 microstructures,” Journal of micromechanics and microengineering, vol. 16, no. 2, p. 276, 2006.

    [69] L. Wang, Z. Cui, J.-S. Hong, E. P. McErlean, R. B. Greed, and D. C. Voyce, “Fabrication of high power rf mems switches,” Microelectronic engineering, vol. 83, no. 4, pp. 1418–1420, 2006.

    [70] C.-H. Lin, G.-B. Lee, B.-W. Chang, and G.-L. Chang, “A new fabrication process for ultra-thick microfluidic microstructures utilizing su-8 pho- toresist,” Journal of Micromechanics and Microengineering, vol. 12, no. 5, p. 590, 2002.

    [71] H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-uv photoresist and its applications for mems,” Sensors and Actuators A: physical, vol. 64, no. 1, pp. 33–39, 1998.

    [72] L. Hecker, L. Khait, S. K. Sessions, and R. K. Birla, “Functional evaluation of isolated zebrafish hearts,” Zebrafish, vol. 5, no. 4, pp. 319–322, 2008.

    [73] G. L. Pedroso, T. O. Hammes, T. D. Escobar, L. B. Fracasso, L. F. For- giarini, and T. R. da Silveira, “Blood collection for biochemical analysis in adult zebrafish,” JoVE (Journal of Visualized Experiments), no. 63, pp. e3865–e3865, 2012.

    [74] R. K. Pal, S. C. Kundu, and V. K. Yadavalli, “Biosensing using photolithographically micropatterned electrodes of PEDOT:PSS on ITO substrates,” Sensors and Actuators B: Chemical, vol. 242, pp. 140–147, 2017.

    [75] W.-C. Huang, Y.-S. Hsieh, I.-H. Chen, C.-H. Wang, H.-W. Chang, C.-C. Yang, T.-H. Ku, S.-R. Yeh, and Y.-J. Chuang, “Combined use of ms-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish,” Zebrafish, vol. 7, no. 3, pp. 297–304, 2010.

    [76] F. Ceyssens and R. Puers, “Creating multi-layered structures with free- standing parts in su-8,” Journal of Micromechanics and Microengineering, vol. 16, no. 6, p. S19, 2006.

    [77] B. W. Roberts and W. Olbricht, “Flow-induced particulate separations,” AIChE journal, vol. 49, no. 11, pp. 2842–2849, 2003.

    [78] B. W. Roberts and W. L. Olbricht, “The distribution of freely suspended particles at microfluidic bifurcations,” AIChE journal, vol. 52, no. 1, pp. 199–206, 2006.

    [79] S. Cheng, Y. Xu, X. Tang, and R. Yang, “Lattice boltzmann study of micro branch array of crossflow filtration for fluid partitioning,” in Complex Medical Engineering (CME), 2013 ICME International Conference on. IEEE, 2013, pp. 586–589.

    QR CODE