簡易檢索 / 詳目顯示

研究生: 楊博帆
Yang, Po-Fan
論文名稱: 混成型太陽能電池之光物理與物理性質研究
Photophysical and physical properties of hybrid solar cells
指導教授: 林皓武
Lin, Hao-Wu
口試委員: 汪根欉
朱治偉
吳志毅
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 132
中文關鍵詞: 瞬態光物理分析染料敏化太陽能電池鈣鈦礦太陽能電池
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要研究方向為有機/無機混成型太陽能電池的物理與光物理性質探討,其中包括以有機染料作為吸光材料的染料敏化太陽能電池、無機矽晶作為主要吸光層的矽晶有機/無機混成太陽能電池,以及使用有機/無機混成晶體材料CH3NH3PbI3作為吸光層的新穎鈣鈦礦有機/無機混成太陽能電池,進行元件的基本光電性質與瞬態光電壓電流的量測分析,探討內部載子反應機制與效率表現之關聯性。此外,我們也關心鈣鈦礦薄膜在不同底部材料上的表面結構變化與元件效率表現。
      第一章部分,介紹近代太陽能電池的發展史,其中包括混成型太陽能電池的研究回顧、所遭遇的瓶頸與未來發展方向。
      第二章部分,概述混成型太陽能電池的工作原理與元件基本光電特性,並介紹元件的電流密度-電壓量測與外部量子效率頻譜分析,以及瞬態光電壓電流量測系統。
      第三章部分,為染料敏化太陽能電池的基本光電性質與瞬態光物理性質分析,我們使用瞬態光電壓電流量測系統來分析釕金屬、鋨金屬錯合物染料,以及純有機D-A-π-A型染料,並發現到染料分子結構引入立障基團能有效抑止TiO2表面電子與電解質發生再覆合反應,然而,過低的染料吸附量也可能降低染料分子對TiO2表面的保護效果,當兩項因素達到平衡後,才會有效的提升元件效率表現。
      第四章部分,我們使用瞬態光電壓電流量測系統來分析矽晶有機/無機混成太陽能電池中SiOx的鈍化效果與元件效率表現的關係,其中,發現SiOx會降低元件中trap-state density的發生,並與元件效率表現有很大的對應關係,然而,過厚的SiOx也會降低載子傳輸能力,影響效率表現。
      第五章部分,對於新穎鈣鈦礦有機/無機混成太陽能電池的研究,我們使用自行合成的前驅反應物CH3NH3I,並以溼式旋塗製程高效率的鈣鈦礦有機/無機混成元件,效率能有10 %以上的表現。此外,我們選擇ZnO作為電子傳輸層與under-layer材料,但鈣鈦礦薄膜的表面結構較為粗糙且有孔洞產生,因此元件效率表現不佳。為改善鈣鈦礦薄膜的表面結構,我們使用真空蒸鍍製程,ZnO仍然是不適合鈣鈦礦的under-layer材料,但觀察到在MoO3、TiO2、PEDOT上,鈣鈦礦都能有覆蓋完整且平整的薄膜表現,預期未來以此製程元件能有不錯的效率表現。


    In this thesis, we focus on the photophysical and physical properties of hybrid solar cells, including dye-sensitized solar cells (DSSCs), Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)/Si organic/inorganic hybrid solar cells and novel perovskite solar cells. We utilized a series of measurement systems to analyze the charge recombination process and carrier concentration in DSSCs and organic/inorganic hybrid solar cells. We investigated the detailed physical properties of perovskite thin films deposited on different under-layer materials. The relationship between surface morphology of perovskite thin films and the device power conversion efficiencies is also discussed.
    In the first chapter, we briefly review the history of photovoltaics, especially recent development of hybrid solar cells.
    In the second chapter, the operation mechanisms and photovoltaic characteristics of the hybrid solar cells are described in detail. The measurement setups and principles of current-voltage curve, external quantum efficiency analysis, and transient photovoltage/photocurrent measurements are also shown in this chapter.
    In the third chapter, the photophysical measurement systems were employed to analyze the Ruthenium(II)-based, Osmium(II)-based and metal-free organic sensitizers in DSSCs. We find that the addition of spacial barrier in molecular structures can slow down the charge recombination from TiO2 to the electrolyte and enhance photovoltage. Besides, dye loading also affects the charge recombination. These two factors need to be considered in the future molecular design of high efficiency dye sensitizer.
    In the fourth chapter, the transient photovoltage/photocurrent measurements were utilized to investigate the influence of trap-state density on power conversion efficiency of PEDOT:PSS/Si organic/inorganic hybrid solar cells. We find that the SiOx passivation layer decreases the amount of trap-state density. However, thicker SiOx becomes a barrier for carrier transportation due to its non-conducting property.
    In the fifth chapter, we manufactured perovskite solar cells from the home-made precursor reactant CH3NH3I. We used planar ZnO thin films as an electron transporting under-layer layers. Poor efficiency was found in solution casted devices with the ZnO under-layer due to the non-uniform surface morphology of perovskite thin films. The surface morphology and surface coverage can be largely improved by vacuum evaporation of perovskite thin films on MoO3, TiO2, and PEDOT:PSS under-layers. We believe that efficient perovskite hybrid solar cells can be realized by utilizing these perovskite/under-layer pairs.

    致謝 I 摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIII Chapter 1 緒論 1 1-1 前言 1 1-2 太陽能電池發展概述 2 1-3 混成型太陽能電池發展概述 5 1-3.1 染料敏化太陽能電池之發展 5 1-3.2 矽晶有機/無機混成太陽能電池之發展 7 1-3.3 新穎鈣鈦礦有機/無機混成太陽能電池之發展 8 1-4 論文結構 12 Chapter 2 混成型太陽能電池工作原理與量測分析 13 2-1 太陽光光譜 13 2-2 混成型太陽能電池工作原理 15 2-2.1. 染料敏化太陽能電池工作原理 15 2-2.2. 矽晶有機/無機混成太陽能電池工作原理 16 2-2.3. 新穎鈣鈦礦有機/無機混成太陽能電池工作原理 16 2-3 混成型太陽能電池光電特性 20 2-3.1. 開路電壓 (open circuit voltage, VOC) 20 2-3.2. 短路電流密度(short circuit current, Jsc) 21 2-3.3. 填充因子(fill factor, F.F.) 21 2-3.4. 光電轉換效率(power conversion efficiency, PCE) 21 2-3.5. 外部量子效率(external quantum efficiency, E.Q.E.) 22 2-4 元件光電性質量測 24 2-4.1 J-V特性曲線 (J-V curve) 24 2-4.2 外部量子效率量測 (External Quantum Efficiency, E.Q.E.) 24 2-4.3 瞬態光電壓電流量測 (Transient Photovoltage/Photocurrent Measurement) 24 Chapter 3 染料敏化太陽能電池 28 3-1 釕金屬染料之分子結構與元件光電特性研究 28 3-1.1 釕金屬染料發展及運用簡介 28 3-1.2 TFRS釕金屬系列染料 36 3-1.2.1 染料結構與光電特性 36 3-1.2.2 元件J-V曲線及E.Q.E 40 3-1.2.3 元件瞬態光電壓電流分析 44 3-1.3 TFOS鋨金屬系列染料 47 3-1.2.1 染料結構與光電特性 47 3-1.2.2 元件J-V曲線及E.Q.E 51 3-1.2.3 元件瞬態光電壓電流分析 55 3-2 純有機染料之分子結構與元件光電特性研究 57 3-2.1 純有機D-π-A染料發展及運用簡介 57 3-2.2 純有機染料:CRCW1、DJ104、DJ112、DJ115、DJ125、DJ142、DJ152 63 3-2.2.1 染料結構與光電特性 63 3-2.2.2 DSSC元件製作 69 3-2.2.3 元件J-V曲線及E.Q.E 70 3-2.2.4 元件瞬態光電壓電流分析 73 3-3 結論 76 Chapter 4 矽晶有機/無機混成太陽能電池 78 4-1 平面型矽晶有機/無機混成太陽能電池發展及簡介 78 4-2 Si/SiOx/PEDOT:PSS平面型混成元件之光電量測與瞬態光物理性質分析 80 4-3 結論 85 Chapter 5 新穎鈣鈦礦有機/無機混成太陽能電池 86 5-1 新穎鈣鈦礦材料應用於有機薄膜太陽能電池之發展 86 5-2 前驅反應物CH3NH3I 89 5-2.1 CH3NH3I合成實驗步驟 89 5-2.2 NMR頻譜量測 90 5-2.3 溼式旋塗製程基本元件測試 92 5-2.4 附錄 95 5-3 溼式旋塗製程鈣鈦礦有機/無機混成太陽能電池 97 5-3.1 ZnO/CH3NH3PbClxI3-x/MoO3結構 97 5-3.2 ZnO/CH3NH3PbClxI3-x/P3HT/MoO3結構 98 5-3.3 ZnO/CH3NH3PbI3/P3HT/MoO3結構 98 5-4 真空蒸鍍製程鈣鈦礦有機/無機混成太陽能電池 104 5-4.1 two-step氣相反應製程 104 5-4.2 不同under-layer材料下的鈣鈦礦表面結構分析 105 5-5 結論 113 Chapter 6 未來展望 114 本論文相關期刊著作 115 參考文獻 116

    1 Q. Schiermeier, J. Tollefson, T. Scully, A. Witze and O. Morton, Energy alternatives: Electricity without carbon, Nature, 2008, 454, 816.
    2 N. R. E. Laboratory, http://www.nrel.gov/.
    3 M. A. Green, Photovoltaic principles, Physica E, 2002, 14, 11.
    4 P. E. Tomaszewski and R. W. Cahn, Jan Czochralski and His Method of Pulling Crystals, MRS Bull., 2004, 29, 348.
    5 S. W. Glunz, R. Preu and D. Biro, Crystalline Silicon Solar Cells: State-of-the-Art and Future Developments, Elsevier, 2012.
    6 V. Petrova-Koch, R. Hezel and A. Goetzberger, High-Efficient Low-Cost Photovoltaics, Springer, 2009.
    7 D. M. Chapin, C. S. Fuller and G. L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys., 1954, 25, 676.
    8 J. Zhao, A. Wang and M. A. Green, 24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates, Res. Appl., 1999, 7, 471.
    9 O. Schultz, W. Glunz S and G. P. Willeke, Multicrystalline Silicon Solarcells exceeding 20% efficiency, Res. Appl., 2004, 12, 533.
    10 D. E. Carlson and C. R. Wronski, Amorphous silicon solar cell, Appl. Phys. Lett., 1976, 28, 671.
    11 J. Yang, A. Banerjee and S. Guha, Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies, Appl. Phys. Lett., 1997, 70, 2975.
    12 X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells, Sol Energy, 2004, 77, 803.
    13 I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, 19•9%-efficient ZnO/CdS/CuInGaSe2solar cell with 81•2% fill factor, Prog. Photovolt: Res. Appl., 2008, 16, 235.
    14 M. A. Green, K. Emery, Y. Hishikawa and W. Warta, Solar Cell Efficiency Tables, Prog. Photovolt: Res. Appl., 2009, 17, 320.
    15 W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys., 1961, 32, 510.
    16 M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion, Springer-Verlag, 2003.
    17 V. Gupta, A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan and A. J. Heeger, Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells, Sci. Rep., 2013, 3.
    18 M. Chemical, http://www.m-kagaku.co.jp/index_en.htm, 2012.
    19 S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem., 2014, 6, 242.
    20 S. Namba and Y. Hishiki, Color Sensitization of Zinc Oxide with Cyanine Dyes, J. Phys. Chem., 1965, 69, 774.
    21 Gerische.H and Tributsc.H, Electrochemistry of Zno Monocrystal Spectral Sensitivity, Ber. Bunsen-Ges. Phys. Chem., 1968, 72, 437.
    22 M. P. Dareedwards, J. B. Goodenough, A. Hamnett, K. R. Seddon and R. D. Wright, Sensitization of Semiconducting Electrodes with Ruthenium-Based Dyes, Faraday Discuss., 1980, 70, 285.
    23 H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Dye Sensitized Zinc-Oxide - Aqueous-Electrolyte - Platinum Photocell, Nature, 1976, 261, 402.
    24 G. M. Hasselman, D. F. Watson, J. R. Stromberg, D. F. Bocian, D. Holten, J. S. Lindsey and G. J. Meyer, Theoretical solar-to-electrical energy-conversion efficiencies of perylene-porphyrin light-harvesting arrays, J. Phys. Chem. B, 2006, 110, 25430.
    25 M. Matsumura, Y. Nomura and H. Tsubomura, Dye-Sensitization on Photocurrent at Zinc-Oxide Electrode in Aqueous-Electrolyte Solution, Bull. Chem. Soc. Jpn., 1977, 50, 2533.
    26 N. Alonso, M. Beley, P. Chartier and V. Ern, Dye Sensitization of Ceramic Semiconducting Electrodes for Photoelectrochemical Conversion, Rev. Phys. Appl., 1981, 16, 5.
    27 D. H. Dung, N. Serpone and M. Gratzel, Integrated Systems for Water Cleavage by Visible-Light - Sensitization of Tio2 Particles by Surface Derivatization with Ruthenium Complexes, Helv. Chim. Acta, 1984, 67, 1012.
    28 J. Desilvestro, M. Gratzel, L. Kavan, J. Moser and J. Augustynski, Highly Efficient Sensitization of Titanium-Dioxide, J. Am. Chem. Soc., 1985, 107, 2988.
    29 N. Vlachopoulos, P. Liska, J. Augustynski and M. Gratzel, Very Efficient Visible-Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface-Area Polycrystalline Titanium-Dioxide Films, J. Am. Chem. Soc., 1988, 110, 1216.
    30 R. Amadelli, R. Argazzi, C. A. Bignozzi and F. Scandola, Design of Antenna-Sensitizer Polynuclear Complexes - Sensitization of Titanium-Dioxide with [Ru(Bpy)2(Cn)2]2ru(Bpy(Coo)2)22-, J. Am. Chem. Soc., 1990, 112, 7099.
    31 M. K. Nazeeruddin, P. Liska, J. Moser, N. Vlachopoulos and M. Gratzel, Conversion of Light into Electricity with Trinuclear Ruthenium Complexes Adsorbed on Textured Tio2 Films, Helv. Chim. Acta, 1990, 73, 1788.
    32 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline Tio2 Electrodes, J. Am. Chem. Soc., 1993, 115, 6382.
    33 M. K. Nazeeruddin, P. Péchy and M. Grätzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex, Chem. Commun., 1997, 1705.
    34 M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer and M. Gratzel, Acid-base equilibria of (2,2 '-bipyridyl-4,4 '-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania, Inorg. Chem., 1999, 38, 6298.
    35 S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel and A. J. Frank, Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B, 1997, 101, 2576.
    36 G. Boschloo and A. Hagfeldt, Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells, Acc. Chem. Res., 2009, 42, 1819.
    37 J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte and S. Gimenez, Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements, J. Phys. Chem. C, 2009, 113, 17278.
    38 S. Ardo and G. J. Meyer, Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces, Chem. Soc. Rev., 2009, 38, 115.
    39 S. E. Koops, B. C. O'Regan, P. R. Barnes and J. R. Durrant, Parameters influencing the efficiency of electron injection in dye-sensitized solar cells, J. Am. Chem. Soc., 2009, 131, 4808.
    40 H. J. Snaith, Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells, Adv. Funct. Mater., 2010, 20, 13.
    41 S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher, J.-E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel and P. Bäuerle, Significant Improvement of Dye-Sensitized Solar Cell Performance by Small Structural Modification in π-Conjugated Donor-Acceptor Dyes, Adv. Funct. Mater., 2012, 22, 1291.
    42 W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z.-s. Wang and H. Tian, Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response, Adv. Funct. Mater., 2011, 21, 756.
    43 H. Nusbaumer, J. E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Gratzel, Co-II(dbbiP)(2)(2+) complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells, J. Phys. Chem. B, 2001, 105, 10461.
    44 J. J. Nelson, T. J. Amick and C. M. Elliott, Mass Transport of Polypyridyl Cobalt Complexes in Dye-Sensitized Solar Cells with Mesoporous TiO2 Photoanodes, J. Phys. Chem. C, 2008, 112, 18255.
    45 S. Cazzanti, S. Caramori, R. Argazzi, C. M. Elliott and C. A. Bignozzi, Efficient non-corrosive electron-transfer mediator mixtures for dye-sensitized solar cells, J. Am. Chem. Soc., 2006, 128, 9996.
    46 J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. L. Cevey-Ha, C. Yi, M. K. Nazeeruddin and M. Gratzel, Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells, J. Am. Chem. Soc., 2011, 133, 18042.
    47 N. Cai, S. J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gratzel, An organic D-pi-A dye for record efficiency solid-state sensitized heterojunction solar cells, Nano Lett., 2011, 11, 1452.
    48 S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and C. A. Bignozzi, Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells, J. Am. Chem. Soc., 2002, 124, 11215.
    49 S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo and A. Hagfeldt, Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells, J. Am. Chem. Soc., 2010, 132, 16714.
    50 B. M. Klahr and T. W. Hamann, Performance Enhancement and Limitations of Cobalt Bipyridyl Redox Shuttles in Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2009, 113, 14040.
    51 H. Tian, Z. Yu, A. Hagfeldt, L. Kloo and L. Sun, Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells, J. Am. Chem. Soc., 2011, 133, 9413.
    52 P. Chen, J. H. Yum, F. De Angelis, E. Mosconi, S. Fantacci, S. J. Moon, R. H. Baker, J. Ko, M. K. Nazeeruddin and M. Grätzel, High open-circuit voltage solid-state dye-sensitized solar cells with organic dye, Nano Lett., 2009, 9, 2487.
    53 L. Schmidt-Mende, J. E. Kroeze, J. R. Durrant, M. K. Nazeeruddin and M. Gratzel, Effect of hydrocarbon chain length of amphiphilic ruthenium dyes on solid-state dye-sensitized photovoltaics, Nano Lett., 2005, 5, 1315.
    54 H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend and M. Gratzel, Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture, Nano Lett., 2007, 7, 3372.
    55 U. B. Cappel, E. A. Gibson, A. Hagfeldt and G. Boschloo, Dye Regeneration by Spiro-MeOTAD in Solid State Dye-Sensitized Solar Cells Studied by Photoinduced Absorption Spectroscopy and Spectroelectrochemistry, J. Phys. Chem. C, 2009, 113, 6275.
    56 U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 1998, 395, 583.
    57 W. Zhang, R. Zhu, F. Li, Q. Wang and B. Liu, High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter, J. Phys. Chem. C, 2011, 115, 7038.
    58 X. Liu, Y. Cheng, L. Wang, L. Cai and B. Liu, Light controlled assembling of iodine-free dye-sensitized solar cells with poly(3,4-ethylenedioxythiophene) as a hole conductor reaching 7.1% efficiency, Phys. Chem. Chem. Phys., 2012.
    59 L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, K. M. Karlsson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt and E. M. Johansson, Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells, Phys. Chem. Chem. Phys., 2012, 14, 779.
    60 K. Tennakone, V. P. S. Perera, I. R. M. Kottegoda and G. R. R. A. Kumara, Dye-sensitized solid state photovoltaic cell based on composite zinc oxide tin (IV) oxide films, J. Phys. D: Appl. Phys., 1999, 32, 374.
    61 P. M. Sirimanne, T. Jeranko, P. Bogdanoff, S. Fiechter and H. Tributsch, On the photo-degradation of dye sensitized solid-state TiO2 vertical bar dye vertical bar CuI cells, Semicond. Sci. Technol., 2003, 18, 708.
    62 H. Sakamoto, S. Igarashi, M. Uchida, K. Niume and M. Nagai, Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups II. Enhancement of the photovoltaic characteristics, Org. Electron., 2012, 13, 514.
    63 B. C. O'Regan, S. Scully, A. C. Mayer, E. Palomares and J. Durrant, The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements, J. Phys. Chem. B, 2005, 109, 4616.
    64 G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D. B. R. A. De Silva and K. Tennakone, Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide, Sol. Energy Mater. Sol. Cells, 2001, 69, 195.
    65 G. Kalita, S. Adhikari, H. R. Aryal, R. Afre, T. Soga, M. Sharon, W. Koichi and M. Umeno, Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes, J. Phys. D: Appl. Phys., 2009, 42, 115104.
    66 S.-C. Shiu, J.-J. Chao, S.-C. Hung, C.-L. Yeh and C.-F. Lin, Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells, Chem. Mater., 2010, 22, 3108.
    67 E. C. Garnett, C. Peters, M. Brongersma, Y. Cui and M. McGehee, Silicon nanowire hybrid photovoltaics, Photovoltaic Specialists Conference (PVSC), 35th IEEE, 2010.
    68 L. He, Rusli, C. Jiang, H. Wang and D. Lai, Simple Approach of Fabricating High Efficiency Si Nanowire/Conductive Polymer Hybrid Solar Cells, Ieee Electr Device L, 2011, 32, 1406.
    69 M. Pietsch, S. Jäckle and S. Christiansen, Interface investigation of planar hybrid n-Si/PEDOT:PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6 %, Appl. Phys. A, 2014, 115, 1109.
    70 A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 2009, 131, 6050.
    71 J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 2011, 3, 4088.
    72 H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2012, 2, 591.
    73 L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin and M. Gratzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, J. Am. Chem. Soc., 2012, 134, 17396.
    74 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 2012, 338, 643.
    75 J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy Environ. Sci., 2013, 6, 1739.
    76 M. Liu, M. B. Johnston and H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 2013, 501, 395.
    77 F. Di Giacomo, S. Razza, F. Matteocci, A. D'Epifanio, S. Licoccia, T. M. Brown and A. Di Carlo, High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer, J. Power Sources, 2014, 251, 152.
    78 S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo and S. I. Seok, Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor, Energy Environ. Sci., 2014.
    79 J. W. Lee, D. J. Seol, A. N. Cho and N. G. Park, High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH ) PbI, Adv. Mater., 2014.
    80 N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier and M. Gratzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting, Angew. Chem. Int. Ed. Engl., 2014, 53, 3151.
    81 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 2013, 342, 341.
    82 J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater., 2013, 25, 3727.
    83 D. Y. Liu and T. L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nat. Photon., 2014, 8, 133.
    84 O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin and H. J. Bolink, Perovskite solar cells employing organic charge-transport layers, Nat. Photon., 2014, 8, 128.
    85 J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS Nano, 2014, 8, 1674.
    86 M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Solar cell efficiency tables (version 44), Prog. Photovolt: Res. Appl., 2014, 22, 701.
    87 S. A. Haque, E. Palomares, B. M. Cho, A. N. Green, N. Hirata, D. R. Klug and J. R. Durrant, Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy, J. Am. Chem. Soc., 2005, 127, 3456.
    88 A. Y. Anderson, P. R. F. Barnes, J. R. Durrant and B. C. O’Regan, Quantifying Regeneration in Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2011, 115, 2439.
    89 F. Zhang, B. Sun, T. Song, X. Zhu and S. Lee, Air Stable, Efficient Hybrid Photovoltaic Devices Based on Poly(3-hexylthiophene) and Silicon Nanostructures, Chem. Mater., 2011, 23, 2084.
    90 J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel and S. I. Seok, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photon., 2013, 7, 486.
    91 Y. S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim and T. Park, A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite, Energy Environ. Sci., 2014, 7, 1454.
    92 S. Dharani, H. K. Mulmudi, N. Yantara, P. T. Thu Trang, N. G. Park, M. Graetzel, S. Mhaisalkar, N. Mathews and P. P. Boix, High efficiency electrospun TiO(2) nanofiber based hybrid organic-inorganic perovskite solar cell, Nanoscale, 2014, 6, 1675.
    93 Z. Ning, Y. Fu and H. Tian, Improvement of dye-sensitized solar cells: what we know and what we need to know, Energy Environ. Sci., 2010, 3, 1170.
    94 B. C. O'Regan and J. R. Durrant, Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real, Acc. Chem. Res., 2009, 42, 1799.
    95 S. M. Sze and K. K. NG, Physical of semiconductor devices (3rd edition), John Wiley & Sons Incorporation, 2007.
    96 A. Ibrahim, Analysis of Electrical Characteristics of Photovoltaic Single Crystal Silicon Solar Cells at Outdoor Measurements, Smart Grid and Renewable Energy, 2011, 02, 169.
    97 M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency, Adv. Mater., 2006, 18, 789.
    98 V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys., 2003, 94, 6849.
    99 B. C. O'Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling and J. R. Durrant, Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films, J. Phys. Chem. B, 2006, 110, 17155.
    100 A. Y. Anderson, P. R. F. Barnes, J. R. Durrant and B. C. O’Regan, Simultaneous Transient Absorption and Transient Electrical Measurements on Operating Dye-Sensitized Solar Cells: Elucidating the Intermediates in Iodide Oxidation, J. Phys. Chem. C, 2010, 114, 1953.
    101 J. Nelson, S. Haque, D. Klug and J. Durrant, Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes, Phys. Rev. B, 2001, 63.
    102 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., 1993, 115, 6382.
    103 M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel, Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2Solar Cell, J. Phys. Chem. B, 2003, 107, 8981.
    104 M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Gratzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc., 2001, 123, 1613.
    105 H. Sugihara, L. P. Singh, K. Sayama, H. Arakawa, M. K. Nazeeruddin and M. Gratzel, Efficient photosensitization of nanocrystalline TiO2 films by a new grass of sensitizer: cis-dithiocyanato bis(4,7-dicarboxy-1,10-phenanthroline)ruthenium(II), Chem. Lett., 1998, 1005.
    106 M. Yanagida, L. P. Singh, K. Sayama, K. Hara, R. Katoh, A. Islam, H. Sugihara, H. Arakawa, M. K. Nazeeruddin and M. Gratzel, A new efficient photosensitizer for nanocrystalline solar cells: synthesis and characterization of cis-bis(4,7-dicarboxy-1,10-phenanthroline)dithiocyanato ruthenium(II), J. Chem. Soc. Dalton Trans., 2000, 2817.
    107 K. Hara, H. Sugihara, L. P. Singh, A. Islam, R. Katoh, M. Yanagida, K. Sayama, S. Murata and H. Arakawa, New Ru(II) phenanthroline complex photo sensitizers having different number of carboxyl groups for dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem., 2001, 145, 117.
    108 K. Hara, H. Sugihara, Y. Tachibana, A. Islam, M. Yanagida, K. Sayama, H. Arakawa, G. Fujihashi, T. Horiguchi and T. Kinoshita, Dye-sensitized nanocrystalline TiO2 solar cells based on ruthenium(II) phenanthroline complex photosensitizers, Langmuir, 2001, 17, 5992.
    109 P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte, Chem. Commun., 2002, 2972.
    110 P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser and M. Grätzel, Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye-Sensitized Solar Cells, Adv. Mater., 2003, 15, 2101.
    111 P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Gratzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nat. Mater., 2003, 2, 402.
    112 P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin and M. Grätzel, Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye-Sensitized Solar Cells, Adv. Mater., 2004, 16, 1806.
    113 P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel, A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells, J. Am. Chem. Soc., 2005, 127, 808.
    114 C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen and K. C. Ho, A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells, Angew. Chem. Int. Edit., 2006, 45, 5822.
    115 C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen and K. C. Ho, A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells, Adv. Mater., 2007, 19, 3888.
    116 C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano, 2009, 3, 3103.
    117 F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gratzel, Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells, J. Am. Chem. Soc., 2008, 130, 10720.
    118 F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gratzel, A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell, Chem. Commun., 2008, 2635.
    119 Y. M. Cao, Y. Bai, Q. J. Yu, Y. M. Cheng, S. Liu, D. Shi, F. F. Gao and P. Wang, Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine, J. Phys. Chem. C, 2009, 113, 6290.
    120 F. F. Gao, Y. M. Cheng, Q. J. Yu, S. Liu, D. Shi, Y. H. Li and P. Wang, Conjugation of Selenophene with Bipyridine for a High Molar Extinction Coefficient Sensitizer in Dye-Sensitized Solar Cells, Inorg. Chem., 2009, 48, 2664.
    121 Q. Yu, S. Liu, M. Zhang, N. Cai, Y. Wang and P. Wang, An Extremely High Molar Extinction Coefficient Ruthenium Sensitizer in Dye-Sensitized Solar Cells: The Effects of π-Conjugation Extension, J. Phys. Chem. C, 2009, 113, 14559.
    122 Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states, ACS Nano, 2010, 4, 6032.
    123 T. Bessho, E. Yoneda, J. H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin and M. Gratzel, New paradigm in molecular engineering of sensitizers for solar cell applications, J. Am. Chem. Soc., 2009, 131, 5930.
    124 B. S. Chen, K. Chen, Y. H. Hong, W. H. Liu, T. H. Li, C. H. Lai, P. T. Chou, Y. Chi and G. H. Lee, Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance, Chem. Commun., 2009, 5844.
    125 K. L. Wu, H. C. Hsu, K. Chen, Y. Chi, M. W. Chung, W. H. Liu and P. T. Chou, Development of thiocyanate-free, charge-neutral Ru(II) sensitizers for dye-sensitized solar cells, Chem. Commun., 2010, 46, 5124.
    126 R. Argazzi, G. Larramona, C. Contado and C. A. Bignozzi, Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine and cyanide ligands, J. Photochem. Photobiol. A: Chem., 2004, 164, 15.
    127 T. Kinoshita, J.-i. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo and H. Segawa, Enhancement of Near-IR Photoelectric Conversion in Dye-Sensitized Solar Cells Using an Osmium Sensitizer with Strong Spin-Forbidden Transition, J. Phys. Chem. Lett., 2012, 394.
    128 K. L. Wu, S. T. Ho, C. C. Chou, Y. C. Chang, H. A. Pan, Y. Chi and P. T. Chou, Engineering of osmium(II)-based light absorbers for dye-sensitized solar cells, Angew. Chem. Int. Ed. Engl., 2012, 51, 5642.
    129 B. C. O'Regan, K. Walley, M. Juozapavicius, A. Anderson, F. Matar, T. Ghaddar, S. M. Zakeeruddin, C. Klein and J. R. Durrant, Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage, J. Am. Chem. Soc., 2009, 131, 3541.
    130 Y. Numata, A. Islam, H. Chen and L. Han, Aggregation-free branch-type organic dye with a twisted molecular architecture for dye-sensitized solar cells, Energy Environ. Sci., 2012, 5, 8548.
    131 M. Dürr, A. Yasuda and G. Nelles, On the origin of increased open circuit voltage of dye-sensitized solar cells using 4-tert-butyl pyridine as additive to the electrolyte, Appl. Phys. Lett., 2006, 89, 061110.
    132 G. Schlichthorl, S. Y. Huang, J. Sprague and A. J. Frank, Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy, J. Phys. Chem. B, 1997, 101, 8141.
    133 A. C. Onicha and F. N. Castellano, Electrolyte-Dependent Photovoltaic Responses in Dye-Sensitized Solar Cells Based on an Osmium(II) Dye of Mixed Denticity, J. Phys. Chem. C, 2010, 114, 6831.
    134 J. R. Jennings, Y. Liu and Q. Wang, Efficiency Limitations in Dye-Sensitized Solar Cells Caused by Inefficient Sensitizer Regeneration, J. Phys. Chem. C, 2011, 115, 15109.
    135 H. Wang and L. M. Peter, Influence of Electrolyte Cations on Electron Transport and Electron Transfer in Dye-Sensitized Solar Cells, J. Phys. Chem. C, 2012, 116, 10468.
    136 S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Role of electrolytes on charge recombination in dye-sensitized TiO(2) solar cell (1): the case of solar cells using the I(-)/I(3)(-) redox couple, J. Phys. Chem. B, 2005, 109, 3480.
    137 H. Kusama and H. Sugihara, Theoretical studies of 1:1 charge-transfer complexes between nitrogen-containing heterocycles and I2 molecules, and implications on the performance of dye-sensitized solar cell, J. Photochem. Photobiol. A: Chem., 2006, 181, 268.
    138 H. Kusama, M. Kurashige and H. Arakawa, Influence of nitrogen-containing heterocyclic additives in I−/I3− redox electrolytic solution on the performance of Ru-dye-sensitized nanocrystalline TiO2 solar cell, J. Photochem. Photobiol. A: Chem., 2005, 169, 169.
    139 K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama and H. Arakawa, Novel polyene dyes for highly efficient dye-sensitized solar cells, Chem. Commun., 2003, 252.
    140 K. Hara, T. Sato, R. Katoh, A. Furube, T. Yoshihara, M. Murai, M. Kurashige, S. Ito, A. Shinpo, S. Suga and H. Arakawa, Novel conjugated organic dyes for efficient dye-sensitized solar cells, Adv. Funct. Mater., 2005, 15, 246.
    141 T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson, X. Ai, T. Q. Lian and S. Yanagida, Phenyl-conjugated oligoene sensitizers for TiO2 solar cells, Chem. Mater., 2004, 16, 1806.
    142 K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga and H. Arakawa, A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%, Chem. Commun., 2001, 569.
    143 K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara and H. Arakawa, Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells, J. Phys. Chem. B, 2002, 107, 597.
    144 K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama and H. Arakawa, Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells, New J. Chem., 2003, 27, 783.
    145 K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara and H. Arakawa, Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes, Sol. Energy Mater. Sol. Cells, 2003, 77, 89.
    146 K. Hara, K. Miyamoto, Y. Abe and M. Yanagida, Electron Transport in Coumarin-Dye-Sensitized Nanocrystalline TiO2 Electrodes, J. Phys. Chem. B, 2005, 109, 23776.
    147 K. Hara, Z.-S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A. Shinpo and S. Suga, Oligothiophene-Containing Coumarin Dyes for Efficient Dye-Sensitized Solar Cells, J. Phys. Chem. B, 2005, 109, 15476.
    148 Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo and K. Hara, Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells: Electron Lifetime Improved by Coadsorption of Deoxycholic Acid, J. Phys. Chem. C, 2007, 111, 7224.
    149 Z. S. Wang, Y. Cui, K. Hara, Y. Dan-Oh, C. Kasada and A. Shinpo, A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells, Adv. Mater., 2007, 19, 1138.
    150 N. Koumura, Z. S. Wang, S. Mori, M. Miyashita, E. Suzuki and K. Hara, Alkyl-functionalized organic dyes for efficient molecular photovoltaics, J. Am. Chem. Soc., 2006, 128, 14256.
    151 Z.-S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube and K. Hara, Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification, Chem. Mater., 2008, 20, 3993.
    152 H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt and L. Sun, Phenothiazine derivatives for efficient organic dye-sensitized solar cells, Chem. Commun., 2007, 3741.
    153 W. H. Liu, I. C. Wu, C. H. Lai, C. H. Lai, P. T. Chou, Y. T. Li, C. L. Chen, Y. Y. Hsu and Y. Chi, Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells, Chem. Commun., 2008, 5152.
    154 D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt and L. Sun, A novel organic chromophore for dye-sensitized nanostructured solar cells, Chem. Commun., 2006, 2245.
    155 D. P. Hagberg, J. H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. C. Sun, A. Hagfeldt, M. Gratzel and M. K. Nazeeruddin, Molecular engineering of organic sensitizers for dye-sensitized solar cell applications, J. Am. Chem. Soc., 2008, 130, 6259.
    156 K. R. Justin Thomas, Y.-C. Hsu, J. T. Lin, K.-M. Lee, K.-C. Ho, C.-H. Lai, Y.-M. Cheng and P.-T. Chou, 2,3-Disubstituted Thiophene-Based Organic Dyes for Solar Cells, Chem. Mater., 2008, 20, 1830.
    157 Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu and H. Tian, Starburst Triarylamine Based Dyes for Efficient Dye-Sensitized Solar Cells, J. Org. Chem., 2008, 73, 3791.
    158 J. Shi, J. Chen, Z. Chai, H. Wang, R. Tang, K. Fan, M. Wu, H. Han, J. Qin, T. Peng, Q. Li and Z. Li, High performance organic sensitizers based on 11,12-bis(hexyloxy) dibenzo[a,c]phenazine for dye-sensitized solar cells, J. Mater. Chem., 2012, 22, 18830.
    159 X. Lu, Q. Feng, T. Lan, G. Zhou and Z.-S. Wang, Molecular Engineering of Quinoxaline-Based Organic Sensitizers for Highly Efficient and Stable Dye-Sensitized Solar Cells, Chem. Mater., 2012, 24, 3179.
    160 K. Pei, Y. Wu, W. Wu, Q. Zhang, B. Chen, H. Tian and W. Zhu, Constructing organic D-A-pi-A-featured sensitizers with a quinoxaline unit for high-efficiency solar cells: the effect of an auxiliary acceptor on the absorption and the energy level alignment, Chemistry, 2012, 18, 8190.
    161 K. Pei, Y. Wu, A. Islam, Q. Zhang, L. Han, H. Tian and W. Zhu, Constructing high-efficiency D-A-pi-A-featured solar cell sensitizers: a promising building block of 2,3-diphenylquinoxaline for antiaggregation and photostability, ACS Appl. Mater. Interfaces, 2013, 5, 4986.
    162 S. R. Li, C. P. Lee, H. T. Kuo, K. C. Ho and S. S. Sun, High-performance dipolar organic dyes with an electron-deficient diphenylquinoxaline moiety in the pi-conjugation framework for dye-sensitized solar cells, Chemistry, 2012, 18, 12085.
    163 J. R. Mann, M. K. Gannon, T. C. Fitzgibbons, M. R. Detty and D. F. Watson, Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films, J. Phys. Chem. C, 2008, 112, 13057.
    164 Y. S. Yen, Y. C. Hsu, J. T. Lin, C. W. Chang, C. P. Hsu and D. J. Yin, Pyrrole-based organic dyes for dye-sensitized solar cells, J. Phys. Chem. C, 2008, 112, 12557.
    165 E. Ronca, M. Pastore, L. Belpassi, F. Tarantelli and F. De Angelis, Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects, Energy Environ. Sci., 2013, 6, 183.
    166 K. F. Chen, Y. C. Hsu, Q. Wu, M. C. Yeh and S. S. Sun, Structurally simple dipolar organic dyes featuring 1,3-cyclohexadiene conjugated unit for dye-sensitized solar cells, Org. Lett., 2009, 11, 377.
    167 K. H. Ko, Y. C. Lee and Y. J. Jung, Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions, J. Colloid Interface Sci., 2005, 283, 482.
    168 S. Avasthi, S. Lee, Y. L. Loo and J. C. Sturm, Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells, Adv. Mater., 2011, 23, 5762.
    169 L. He, C. Jiang, H. Wang, D. Lai and Rusli, High efficiency planar Si/organic heterojunction hybrid solar cells, Appl. Phys. Lett., 2012, 100, 073503.
    170 Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno and H. Shirai, Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells, Appl. Phys. Lett., 2012, 100, 183901.
    171 I. Khatri, Z. Tang, Q. Liu, R. Ishikawa, K. Ueno and H. Shirai, Green-tea modified multiwalled carbon nanotubes for efficient poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon hybrid solar cell, Appl. Phys. Lett., 2013, 102, 063508.
    172 L. Dong, Z. Yunfang, F. Xiao, Z. Fute, S. Tao and S. Baoquan, An 11%-Power-Conversion-Efficiency Organic-Inorganic Hybrid Solar Cell Achieved by Facile Organic Passivation Organic, Electron Device Letters, IEEE, 2013, 34, 345.
    173 Y. Zhu, T. Song, F. Zhang, S.-T. Lee and B. Sun, Efficient organic-inorganic hybrid Schottky solar cell: The role of built-in potential, Appl. Phys. Lett., 2013, 102, 113504.
    174 W. R. Wei, M. L. Tsai, S. T. Ho, S. H. Tai, C. R. Ho, S. H. Tsai, C. W. Liu, R. J. Chung and J. H. He, Above-11%-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures, Nano Lett., 2013, 13, 3658.
    175 E. H. Nicollian and A. Goetzberger, The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique, Bell System Technical Journal, 1967, 46, 1055.
    176 A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian and E. H. Sargent, Hybrid passivated colloidal quantum dot solids, Nat. Nanotechnol., 2012, 7, 577.
    177 C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, J. de Mello and J. R. Durrant, Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell, Appl. Phys. Lett., 2008, 92, 093311.
    178 S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum and Y. M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells, Energy Environ. Sci., 2014, 7, 399.
    179 P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nat. Commun., 2013, 4, 2761.
    180 P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin and A. K. Jen, Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells, Adv. Mater., 2014, 26, 3748.
    181 Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan and J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process, Energy Environ. Sci., 2014, 7, 2359.
    182 G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells, Adv. Funct. Mater., 2014, 24, 151.
    183 J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 2013, 499, 316.
    184 Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li and Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc., 2014, 136, 622.
    185 O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, E. Bandiello, L. Camacho, M. K. Nazeeruddin and H. J. Bolink, Metal-Oxide-Free Methylammonium Lead Iodide Perovskite-Based Solar Cells: the Influence of Organic Charge Transport Layers, Adv. Energy Mater., 2014.
    186 Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao and J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ. Sci., 2014, 7, 2619.
    187 B. Qi and J. Wang, Fill factor in organic solar cells, Phys. Chem. Chem. Phys., 2013, 15, 8972.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE