簡易檢索 / 詳目顯示

研究生: 許唐暉
Shiu, Tang-Huei
論文名稱: 鈣鈦礦表面形貌對薄膜太陽能元件效率影響分析
Study of morphology of perovskite thin film for solar cells
指導教授: 陳學仕
Chen, Hsueh-Shih
口試委員: 吳志明
Wu, Jyh-Ming
鍾淑茹
Chung, Shu-Ru
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 73
中文關鍵詞: 鈣鈦礦太陽能電池表面形貌甲苯處理法前驅物比例LaMer模型
外文關鍵詞: Perovskite solar cell, Morphology, Toluene treatment, Molar ratio, LaMer model
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中藉由調控鈣鈦礦溶液中前驅物的比例 (碘化鉛和甲基鹵化鉛) 控制鈣鈦礦薄膜表面形貌,結果發現表面形貌粗糙度隨比例增加而增加,粗糙表面主要來自碘化鉛的單獨析出。為了改善薄膜表面形貌,我們使用溶劑甲苯強迫鈣鈦礦晶粒析出以得到緻密薄膜,將此製程薄膜應用於元件後發現元件效率最高可以達到7.2%,但是其薄膜品質難以控制,導致元件再現性不佳,平均效率約2.26 ± 1.64%。透過LaMer模型後發現,薄膜品質和成膜前期的成核有很大關係。因此對甲苯使用時間點進行研究,結果發現甲苯使用時間點會影響薄膜的表面形貌。較早的使用點能增加元件開路電壓的大小以及其再現性,將元件平均效率提升至4.87 ± 1.29%,但是短路電流依然再現性不佳,之後藉由調整碘化鉛和甲基鹵化鉛間的比例,解決薄膜表面產生針孔的問題,將元件平均效率提升到8.55 ± 0.61%。經過調整製程參數後最高元件效率可以達到10.2%。


    In this study, we investigated the molar ratio of the precursor (i.e., MAI to PbI2) to adjust the morphology of perovskite thin films. The result reveals that the roughness of morphology increases as PbI2/MAI ratio increases. The rough morphology is due to a precipitation of PbI2. In order to improve the morphology of perovskite thin films, we utilized poor solvent treatment to increase the precipitation of perovskite nuclei to get the dense films. With the toluene treatment, the highest efficiency of device can reach 7.2%. However, the devices reveal poor reproducibility, which average efficiency is 2.26 ± 1.64%. According to LaMer model, the quality of film strongly depends on the nucleation for early time of fabrication process. Therefore, we investigated the effect of introducing point of poor solvent on the morphology, and found that the introducing point of poor solvent dominates the morphology of perovskite films. The earlier introducing time can enhance the VOC, which obtains better average efficiency of 4.87 ± 1.29%. Because JSC of device still had poor reproducibility, we adjusted the PbI2/MAI ratio, which enhanced the average PCE to 8.55 ± 0.61%. After the adjustment for fabricate process, the highest PCE can reach 10.2%.

    Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Composition of perovskite materials 3 2.2 Working principles of perovskite solar cells 4 2.3 Basic factors in perovskite solar cells 5 2.4 VOC and recombination in perovskite solar cells 7 2.5 Device structures of perovskite solar cells 8 2.5.1 Mesoporous structure 8 2.5.2 Planar structure 8 2.6 Fabrication process of perovskite solar cells 9 2.7 Initial development of perovskite solar cell 11 2.8 Improvements in fabrication techniques of perovskite solar cell 12 2.9 Precursor engineering in perovskite solar cell 14 2.10 Low-temperature process planar heterojunction perovskite (PHJ) solar 20 Chapter 3 Experimental methods 28 3.1 Chemicals 28 3.2 Instruments 29 3.2.1 X-ray diffraction 29 3.2.2 Scanning electron microscope 29 3.3 Device fabrication and measurement 30 3.3.1 Material preparation 30 3.3.2 Device fabrication 30 3.3.3 Device measurement 32 Chapter 4 Results and discussion 33 4.1 Effect of PbI2/MAI ratios on perovskite films morphology 34 4.2 Effect of toluene treatment on the morphology of perovskite thin film 44 4.2.1 Effect of toluene dropping time on the morphology of perovskite thin film fabricated by PbI2/MAI ratio of 0.6 44 4.2.2 Effect of PbI2/MAI ratios on the morphology of perovskite thin film treated by toluene with the dropping time of 10 s 49 4.2.3 Effect of toluene dropping time on the morphology of perovskite thin film fabricated by PbI2/MAI ratio of 0.8 54 4.3 Effect of the precursor concentration on the solar efficiency of perovskite thin film 57 4.4 Effect of DMSO on the morphology of perovskite thin film 63 4.5 Conclusions 68 References 69 Appendix 72 A.1 Application of CdSe QDs to perovskite solar cell 72

    1. C. Battaglia, A. Cuevas and S. De Wolf, Energy Environ. Sci., 2016, 9, 1552-1576.
    2. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050-6051.
    3. S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh and S. I. Seok, Science, 2017, 356, 167-171.
    4. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith and R. J. Nicholas, Nat. Phys., 2015, 11, 582-587.
    5. M. E. Ziffer, J. C. Mohammed and D. S. Ginger, ACS Photonics, 2016, 3, 1060-1068.
    6. N.-G. Park, Mater. Today, 2015, 18, 65-72.
    7. M. S. Alias, I. Dursun, M. I. Saidaminov, E. M. Diallo, P. Mishra, T. K. Ng, O. M. Bakr and B. S. Ooi, Opt. Express, 2016, 24, 16586-16594.
    8. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science, 2013, 342, 341-344.
    9. B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero and I. Mora-Sero, J. Phys. Chem. Lett., 2014, 5, 1628-1635.
    10. L. Gil-Escrig, A. Miquel-Sempere, M. Sessolo and H. J. Bolink, J. Phys. Chem. Lett., 2015, 6, 3743-3748.
    11. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang and M. G. Kanatzidis, Nat. Photonics, 2014, 8, 489-494.
    12. M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar and N. Mathews, Adv. Mater., 2014, 26, 7122-7127.
    13. D. Zhou, T. Zhou, Y. Tian, X. Zhu and Y. Tu, J Nanomater., 2018, 2018, 1-15.
    14. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 2013, 13, 1764-1769.
    15. B. Olyaeefar, S. Ahmadi-Kandjani and A. Asgari, Physica E: Low-dimensional Systems and Nanostructures, 2017, 94, 118-122.
    16. Z. Shi and A. H. Jayatissa, Materials, 2018, 11.
    17. N. Elumalai, M. Mahmud, D. Wang and A. Uddin, Energies, 2016, 9, 861.
    18. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale, 2011, 3, 4088-4093.
    19. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Sci. Rep., 2012, 2, 591.
    20. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel and S. I. Seok, Nature Photonics., 2013, 7, 486-491.
    21. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature, 2013, 499, 316-319.
    22. J. H. Im, I. H. Jang, N. Pellet, M. Gratzel and N. G. Park, Nat. Nanotechnol., 2014, 9, 927-932.
    23. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Z. A. Dowben, O. F. Mohammed, E. H. Sargent and O. M. Bakr, Science, 2015, 347, 519-521.
    24. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nat. Mater., 2014, 13, 897-903.
    25. T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix and T. Baikie, J. Phys. Chem. C., 2013, 118, 16458-16462.
    26. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, Energy Environ. Sci., 2014, 7, 982.
    27. N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier and M. Gratzel, Angew. Chem., 2014, 53, 3151-3157.
    28. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Nature, 2015, 517, 476-480.
    29. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234-1237.
    30. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234-1237.
    31. D. Liu and T. L. Kelly, Nat. Photonics, 2013, 8, 133-138.
    32. D. Liu, M. K. Gangishetty and T. L. Kelly, J. Mater. Chem. A, 2014, 2, 19873-19881.
    33. L. Wang, W. Fu, Z. Gu, C. Fan, X. Yang, H. Li and H. Chen, J. Mater. Chem. C, 2014, 2, 9087-9090.
    34. W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, J. Ge, H. Tao, H. Lei, G. Fang and Y. Yan, J. Mater. Chem. A, 2015, 3, 17971-17976.
    35. J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira and T. Miyasaka, J. Mater. Chem. A, 2015, 3, 10837-10844.
    36. Huanping Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345, 542-546.
    37. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395-398.
    38. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, Adv. Mater., 2013, 25, 3727-3732.
    39. Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan and J. Huang, Energy Environ. Sci., 2014, 7, 2359-2365.
    40. F. Zhang, J. Lian, J. Song, Y. Hao, P. Zeng and H. Niu, J. Mater. Chem. A, 2016, 4, 3438-3445.
    41. J. Seo, S. Park, Y. Chan Kim, N. J. Jeon, J. H. Noh, S. C. Yoon and S. I. Seok, Energy Environ. Sci., 2014, 7, 2642-2646.
    42. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang and A. D. Mohite, Science, 2015, 347, 522-525.
    43. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Adv. Funct. Mater., 2014, 24, 151-157.
    44. S. T. Williams, F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang and A. K.-Y. Jen, ACS Nano., 2014, 8, 10640-10654.
    45. Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang and J. Huang, Energy Environ. Sci., 2015, 8, 2464-2470.
    46. T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Avila, M. Sessolo, H. J. Bolink and L. J. A. Koster, ACS Energy Lett., 2017, 2, 1214-1222.
    47. J.-H. Im, H.-S. Kim and N.-G. Park, APL Mater., 2014, 2, 081510.
    48. B. Huang, Q. He, W. Fa, P. Li, Y. Zhang and Z. Zheng, Bull. Mater. Sci., 2012, 47, 2599-2604.
    49. Y. Li, Z. Zhao, F. Lin, X. Cao, X. Cui and J. Wei, Small, 2017, 13, 1604125.
    50. B. Ding, Y. Li, S. Y. Huang, Q. Q. Chu, C. X. Li, C. J. Li and G. J. Yang, J. Mater. Chem. A, 2017, 5, 6840-6848.
    51. J. Polte, CrystEngComm, 2015, 17, 6809-6830.
    52. N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi and N. G. Park, J. Am. Chem. Soc., 2015, 137, 8696-8699.
    53. Y. J. Jeon, S. Lee, R. Kang, J. E. Kim, J. S. Yeo, S. H. Lee, S. S. Kim, J. M. Yun and D. Y. Kim, Sci. Rep., 2014, 4, 6953.
    54. R. Zhou, R. Stalder, D. Xie, W. Cao, Y. Zheng, Y. Yang, M. Plaisant, P. H. Holloway, K. S. Schanze, J. R. Reynolds and J. Xue, ACS Nano, 2013, 7, 4846-4854.
    55. W. Fu, Y. Shi, W. Qiu, L. Wang, Y. Nan, M. Shi, H. Li and H. Chen, Phys. Chem. Chem. Phys., 2012, 14, 12094-12098.
    56. C. H. Chuang, P. R. Brown, V. Bulovic and M. G. Bawendi, Nat. Mater., 2014, 13, 796-801.

    QR CODE