研究生: |
陳郁文 Chen, Yu-Wen. |
---|---|
論文名稱: |
含非平面之負二價四配位配位基與銥金屬錯合物的合成、結構鑑定及光物理性質分析 Synthesis, Structures Identification, and Photophysical Properties Analysis for Iridium(III) Complexes Bearing a Nonplanar Tetradentate Dianionic Ligand |
指導教授: |
季昀
Chi, Yun |
口試委員: |
蔡易州
Tsai, Yi-Chou 張志豪 Chang, Chih-Hao 徐秀福 Hsu, Hsiu-Fu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 有機發光二極體 、銥金屬 、錯合物 |
外文關鍵詞: | OLEDs, Iridium, Complex |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以雙三牙配位基 (3+3) 合成的銥金屬錯合物,由於其結構的剛性以及光色的可調控性,已經展現出其製作 OLEDs 元件的潛力。而本論文主要以 (N^C^N^N) 作為負二價四配位,搭配不同的單配位或二配位配位基合成出 (4+2)、(4+1+1) 或雙銥金屬的錯合物。這三個系列的反應,需先合成出銥金屬與四配位的中間體,在和單配位或二配位進行反應。在錯合物的鑑定中,利用單晶繞射可以觀察到四配位與銥金屬是一個非平面的結構,因此剩下的空配位會是 cis 的位相,且可以發現因為其斷共軛的設計,使的四配位與中心金屬會形成三個六圓環的結構。 第一系列中,使用單配位的 4-methylpyrazole、3,5-dimethylpyrazole 和 4-dimethylaminopyridine 及二配位的 acetylacetone 和 picolinic acid 合成錯合物,分別測量其固態和液態的光物理,液態下最高量子效率為 9.1 %,固態下最高的量子效率為 14.1 %,其效率並不理想。於是在第二系列使用了二配位的 pyridine pyrazole 和 pyrazine pyrazole 合成錯合物,在合成這系列的錯合物時,發現會有異構物的生成,並由單晶繞射得到證明,分別測量其固態和液態的光物理,液態下最高量子效率為 10.7 %,固態下最高的量子效率則可達 83.7 %。第三系列是以單配位的 4-methylpyrazole、3,5-dimethylpyrazole 加入了鹼進行反應,卻意外得到了雙銥金屬的錯合物,可以從氫譜 NMR 中發現有 metal hydride 的訊號,並由單晶繞射得知是一個雙銥金屬的結構,且其含有羰基的鍵結。
Bis-tridentate Iridium (III) skeletons (3+3) have shown high potential in application with organic light-emitting diodes (OLEDs). Owing to rigidified architecture and color-tunability of 3+3 system, this class of emitters can exhibit not only excellent emission efficiency but also emission color spanning from red to blue. According to their robust structure, in this thesis, we studied iridium complexes employing multi-dentate dianionic chelating ligands, i.e. tetradentate chelates (N^C^N^N), and plus either double monodentate (4+1+1) or bidentate (4+2). This type of iridium complexes can be obtained by first assembling tetradentate onto iridium metal, followed by the addition with second pro-chelating ligands, for which employed monodentate ligands are 4-methylpyrazole, 3,5-dimethylpyrazole and 4-dimethylaminopyridine while bidenate ones are acetylacetone, picolinic acid, pyridyl pyrazole and pyrazinyl pyrazole. With single X-ray crystallographic results, non-coplannar geometry can be observed in tetradentate-iridium complexes. Moreover, it’s noteworthy that tetradentate-iridium complexes also form three 6-membered metallacycle and remain two cis vacant site.
First, those iridium compounds occupied by 4-methylpyrazole, 3,5-dimethylpyrazole and 4-dimethylaminopyridine and acetylacetone, picolinic acid in remaining vacant sites provided inferior emission efficiencies with peaks at 9.1% in fluid state while 14.1% in solid state. Secondly, multi-dentate iridium complexes embodied with pyridyl pyrazole and pyrazinyl pyrazole showed peak emission efficiencies of 10.7 % in degassed solution but higher 83.7 % in powder states. Surprisingly, the stereoisomers can be obtained in this type of iridium skeleton and can be unambiguously unfolded by single X-ray analysis. Thirdly, to our surprises, the presence of base together with monodentate, i.e. 4-methylpyrazole and 3,5-dimethylaminopyridine, can afford di-iridium complexes with CO attached and unique metal hydride. These iridium architecture also can be unveiled by crystallographic analysis. Hopefully, this synthetic knowledge can offer better understanding of multi-dentate iridium compounds and thus obtain efficient emitters for OLEDs applications.
1. M. Pope, H. Kallmann and J. Giachino, J. Chem. Phys., 1965, 42, 2540-2543.
2. M. Pope, H. P. Kallmann and P. Magnante, J. Chem. Phys., 1963, 38, 2042-2043.
3. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913-915.
4. C. Adachi, M. A. Baldo and S. R. Forrest, J. Appl. Phys., 2000, 87, 8049-8055.
5. M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature, 2000, 403, 750-753.
6. T. Főrster, Discuss. Faraday Soc., 1959, 27, 7-17.
7. D. L. Dexter, J. Chem. Phys., 1953, 21, 836-850.
8. J. C. Koziar and D. O. Cowan, Acc. Chem. Res., 2002, 11, 334-341.
9. A. Jablonski, Nature, 1933, 131, 839-840.
10. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151-154.
11. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082-2084.
12. J. Li, P. I. Djurovich, B. D. Alleyne, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, Polyhedron, 2004, 23, 419-428.
13. S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu and C. H. Chen, Adv. Mater., 2005, 17, 285-289.
14. J. Lee, H. Oh, J. Kim, K.-M. Park, K. S. Yook, J. Y. Lee and Y. Kang, J. Mater. Chem. C, 2014, 2, 6040-6047.
15. A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, J. Am. Chem. Soc., 2003, 125, 7377-7387.
16. T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes and S. R. Forrest, Inorg. Chem., 2005, 44, 7992-8003.
17. A. J. Wilkinson, A. E. Goeta, C. E. Foster and J. A. Williams, Inorg. Chem., 2004, 43, 6513-6515.
18. A. J. Wilkinson, H. Puschmann, J. A. Howard, C. E. Foster and J. A. Williams, Inorg. Chem., 2006, 45, 8685-8699.
19. B. Tong, H.-Y. Ku, I. J. Chen, Y. Chi, H.-C. Kao, C.-C. Yeh, C.-H. Chang, S.-H. Liu, G.-H. Lee and P.-T. Chou, J. Mater. Chem. C, 2015, 3, 3460-3471.
20. J. Lin, N.-Y. Chau, J.-L. Liao, W.-Y. Wong, C.-Y. Lu, Z.-T. Sie, C.-H. Chang, M. A. Fox, P. J. Low, G.-H. Lee and Y. Chi, Organometallics, 2016, 35, 1813-1824.
21. C. Y. Kuei, W. L. Tsai, B. Tong, M. Jiao, W. K. Lee, Y. Chi, C. C. Wu, S. H. Liu, G. H. Lee and P. T. Chou, Adv. Mater., 2016, 28, 2795-2800.
22. S. Obara, M. Itabashi, F. Okuda, S. Tamaki, Y. Tanabe, Y. Ishii, K. Nozaki and M. A. Haga, Inorg. Chem., 2006, 45, 8907-8921.
23. P. Brulatti, R. J. Gildea, J. A. Howard, V. Fattori, M. Cocchi and J. A. Williams, Inorg. Chem., 2012, 51, 3813-3826.
24. C. Hierlinger, T. Roisnel, D. B. Cordes, A. M. Z. Slawin, D. Jacquemin, V. Guerchais and E. Zysman-Colman, Inorg. Chem., 2017, 56, 5182-5188.
25. D. Chen, K. Li, X. Guan, G. Cheng, C. Yang and C.-M. Che, Organometallics, 2017, 36, 1331-1344.
26. Y. S. Li, J. L. Liao, K. T. Lin, W. Y. Hung, S. H. Liu, G. H. Lee, P. T. Chou and Y. Chi, Inorg. Chem., 2017, 56, 10054-10060.
27. T. Ziegler, and A. Rauk, Inorg. Chem., 1979, 18, 1755-1759.
28. C. Wang, B. Bley, G. Balzer-Jollenbeck, A. R. Lewis, S. C. Siu, H. Willner, and F. Aubke, Chem. Commun., 1995, 0, 2071-2072.
29. V. W.-W. Yam, and K. M.-C. Wong, Chem. Commun., 2011, 47, 11579-11592.
30. X. Yang, X. Xu, and G. Zhou, J. Mater. Chem. C, 2015, 3, 913-944.
31. K. S. Yook, and J. Y. Lee, Adv. Mater., 2012, 24, 3169-3190.
32. H. Sasabe, and J. Kido, Eur. J. Org. Chem., 2013, 34, 7653-7663.
33. Y. Chi, B. Tong, and P. T. Chou, Coord. Chem. Rev., 2014, 281, 1-25.
34. E. W. Ciurczak, Practical Spectroscopy Series, 2001, 27, 7-18.
35. A. C. Ugural, and S. K. Fenster, Advanced Strength and Applied Elasticity, 4th ed.
36. T. Beutel, S. Kawi, S. K. Purnell, H. Knoezinger, and B. C. Gates, J. Chem. Phys., 1993, 97, 7284-7289.
37. M. Mihaylov, E. Ivanova, F. Thibault-Starzyk, M. Daturi, L. Dimitrov, and K. Hadjiivanov, J. Chem. Phys., 2006, 110, 10383-10389.