研究生: |
馬多娜 Indah Primadona |
---|---|
論文名稱: |
功能化奈米粒子結合基質輔助雷射脫附游離飛行質譜儀應用於醣分子與醣基化胜肽之鑑定 Surface Functionalized Nanoparticles for Characterization of Glycans and Glycopeptides by MALDI-TOF MS |
指導教授: |
陳玉如
Chen, Yu Ju 林俊成 Lin, Chun Cheng |
口試委員: |
林俊宏
Lin, Chun Hung 張煥宗 Chang, Huan Tsung 邱繼輝 Khoo, Kay Hooi |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 128 |
中文關鍵詞: | 納米粒子 、質譜 、基質輔助激光解吸/電離 、聚醣 、糖肽 、碎片 |
外文關鍵詞: | Nanoparticles, Mass Spectrometry, Matrix-assisted laser desorption/ionization, Glycans, Glycopeptides, Fragmentation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無機奈米粒子的特殊性質和它們與脈衝雷射光的交互作用,已經促使其應用在提升碳水化合物或醣類分子於基質輔助雷射脫附游離飛行質譜儀中的脫附游離作用。醣複合物普遍存在並於各種不同的生物反應中扮演著關鍵角色。由於其低穩定性和高度的結構多樣性,醣類結構鑑定通常需要進行化學衍生反應和 精密儀器的分析。然而,在大多數的情況中,衍生反應需要大量的樣品,因此提高了汙染物和副反應的風險。建立快速、靈敏、全面性的醣類定序方法並且無須進行化學衍生反應,依然是一個相當大的挑戰。
在本論文中,我們發展一個單步驟-虛擬串聯式質譜法的分析策略,利用此方法利用具有紫外線吸收特性的基質功能化磁性奈米粒子的和結合基質輔助雷射脫附游離質譜法建立分析平台。奈米粒子濃度調節的離子化和碎裂化方法以促進醣化合物的結構測定。省略了化學衍生步驟後,此分析策略能夠成功地分辨出三醣的異構物。低濃度的奈米基質增強了樣品中完整分子離子訊號,作為精確質量的判斷依據。另一方面,高濃度的奈米基質能促進廣泛和獨特的碎裂反應,包括高能鍵斷裂(A和X型交叉環列解),這些特性有助於鑑定醣類的聯結和序列而無須利用常規使用的串聯質譜儀。此方法在分析複雜樣品上的可行性進一步於醣類混合物中進行評估,在此分析當中,分子離子能夠明確地偵測到,並且特徵產物離子提供足夠的特異性作為分子鑑定和異構物區別之用。除此之外,我們分析了多層奈米基質的各種作用:包含基質(能量吸收)、矽烷塗層(能量池和分散)、三氧化四鐵的核心(裂解作用)。基於光電能與熱能測量的結果,提出了奈米粒子引導游離及裂解中電子與能量的轉換機制。三醣的分辦測試作為初步奈米粒子輔助基質輔助雷射脫附游離質譜應用於醣類鑑定上,已經闡明了該方法策略的背後,部分奈米粒子中介的能量轉移動力學。這個結構專一性的質譜分子離子碎裂法,提供一個可用於確認未知物或闡明化學結構的有效的分析方法。
進一步,建立2,5-二羟基苯甲酸官能基化的碲化汞奈米粒子(HgTe@DHB NPs)作為基質輔助雷射脫附游離質譜中雙游離-脫附元件的分析方法,在單一檢測實驗中對複雜的醣類進行鑑別。以線性醣類為例,HgTe@DHB奈米粒子促進雷射誘導的廣泛分子解離反應,相較於HgTe微粒子和其他官能化或為官能化的無機奈米粒子(二氧化鈦,氧化鋅和三氧化二猛奈米粒子),HgTe@DHB奈米粒子更增強目標醣類的偵測訊號。大量的特徵糖苷訊號(Y 和B型離子)和跨環裂解離子(A型離子),使醣類的組成、序列、分支和不穩定的唾液酸化都能達成精確鑑定。此策略的廣泛應用性已藉由鑑定不穩定的唾液酸化醣類和兩組複雜的異構物醣類得到證實。我們的實驗結果證明,這個應用HgTe@DHB奈米粒子的虛擬串聯式質譜法,省略了化學衍生反應和常規的串聯式質譜分析法,有利於生物學相關和複雜醣類的分析。
最後,結合微波輔助去醣基化反應和奈米粒子輔助雷射脫附游離質譜,此簡易和創新的技術應用於醣胜肽的鑑定分析。從微波輔助去醣基化反應所產生的醣胜肽、醣基和胜肽,隨後以基質輔助雷射脫附游離質譜法進行分析。使用MNP@DHB作為基質,岩藻醣化 N型醣類複合物的組成、序列、分支和鏈結等資訊可被取得,而胜肽序列則以串聯式質譜儀技術偵測。此方法的適用性可藉由其可區分2種人工合成的N型醣胜肽異構物而證明。從觀察到的特殊糖苷鍵 (B3 ion, m/z = 536.8) 和跨環解離離子 (2,4A6, m/z = 1324.0),終端具有岩藻醣基化的醣胜肽能明確地與核心岩藻醣基化的醣胜肽區分開來。
這項研究的成果有助於拓展分析化學的領域,以及推進奈米粒子輔助雷射脫附游離質譜法對醣類和醣類複合物偵測和鑑定的理解。)
The unique properties of inorganic nanoparticles (NPs) and their interaction with pulsed laser irradiation have been exploited in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the enhanced desorption and ionization of carbohydrates or glycans. Glycoconjugates are ubiquitously present and play critical roles in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycans generally requires chemical derivatization and sophisticated instrumentation. However, in most cases, the derivatization requires large sample amount and enhances the risk of introducing contaminants and side reactions. The development of rapid, sensitive and comprehensive glycan sequencing methods that do not require chemical derivatization remains a considerable challenge.
In this thesis, the development of single-step pseudo-MS/MS approach for tunable ionization and fragmentation to facilitate structure determination of glycoconjugates, using concentration-dependent UV-absorbing matrix-functionalized magnetic nanoparticles and MALDI MS was presented. Without chemical derivatization, this approach successfully distinguished isomeric sets of trisaccharides. Low concentration of nanomatrix provided enhanced signal for accurate mass determination of intact molecular ions in the sample. In contrast, high concentration of nanomatrix induced extensive and unique fragmentation, including high-energy facile bond breakage (A- and X-type cross-ring cleavages), which facilitated the linkage and sequence characterization of oligosaccharides without conventional tandem mass spectrometric instrumentation. The practicality of this approach for complex sample analysis was evaluated by an oligosaccharide mixture, wherein molecular ions are unambiguously observed and signature product ions are distinguishable enough for molecular identification and isomer differentiation. Subsequently, the roles of the multilayer nanomatrix components: matrix (energy absorption), silane-coating (energy pooling and dissipation) and core Fe3O4 (fragmentation) was also investigated. The plausible electron and energy transfer mechanism was proposed based on the threshold energy of photoelectrons and thermal energy measurements. The differentiation of tri-oligosaccharides, which served as the first step toward glycan characterization by nanoparticle-assisted MALDI-MS, had shed some insight on the nanoparticle-mediated energy transfer dynamics behind the proposed approach. The structure-specific fragmentation of molecular ions in mass spectrometry provides an efficient analytical method for confirming unknown analytes or for elucidating chemical structures.
Next, a method for complicated glycan characterization in a single assay by employing the 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe@DHB NPs) as a dual ionization-dissociation element in MALDI-MS was developed. Using a linear glycan, HgTe@DHB NPs promote laser-induced extensive dissociation and intensive detection of the target glycan, superior to the HgTe microparticles and other functionalized and non-functionalized inorganic nanoparticles (TiO2, ZnO, and Mn2O3 NPs). Abundant generation of diagnostic glycosidic (Y-, and B-type ions) and cross-ring cleavage (A-type ion) ions permit unambiguous determination of the composition, sequence, branching, and linkage of labile sialylated glycans. The general utility of this approach was demonstrated on the characterization of labile sialylated glycans and two sets of complicated isomeric glycans. Our results show that this "pseudo-MS/MS” obtained by HgTe@DHB can be beneficial for the analysis of biologically relevant and more complicated glycans without the need of chemical pre-derivatization and conventional tandem mass spectrometry.
Lastly, a facile and innovative technique for glycopeptide characterization incorporating the microwave-assisted enzymatic deglycosylation and nanoparticle-assisted LDI-MS was designed and demonstrated. The mixture of glycopeptide, glycan, and peptide resulted from microwave-assisted deglycosylation reaction was subsequently analyzed in MALDI-MS. Using MNP@DHB matrix, the composition, sequence, branching, and linkage information of fucosylated N-glycoconjugates were acquired, while, the sequence of the peptide backbone was obtained by tandem mass spectrometry technique. The applicability of this method was shown by its ability to distinguish two synthetic isomeric N-glycopeptides. Through the observed unique glycosidic bond (B3 ion, m/z = 536.8) and cross-ring cleavage (2,4A6, m/z = 1324.0) ions, the terminal fucosylated glycopeptide can be unambiguously discriminated from core fucosylated glycopeptide.
It is expected that the results of this work can contribute to the ever expanding field of analytical chemistry, as well as advance the understanding in nanoparticle-based MALDI mass spectrometry for detection and characterization of glycans and glycoconjugates.
1. B. Bhusan, Handbook of Nanotechnology, Springer, 2004.
2. R. P. Feynman, SPIE MILESTONE SERIES MS, 2006, 182, 3.
3. N. Taniguchi, Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.
4. J. R. Szczech, J. M. Higgins, S. Jin, Enhancement of thermoelectric properties in nanoscale and nanostructured materials, J. Mater. Chem. 2011, 21, 4037-4055.
5. H. Alam, S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy 2013, 2, 190-212.
6. P. Dutta, M. S. Seehra, S. Thota, J. Kumar, A comparative study of magnetic properties of bulk and nanocrystalline Co3O4, J. Phys. Condens. Matter, 2007, 20, 015218.
7. L. Li, Y. J. Zhu, High chemical reactivity of silver nanoparticles toward hydrochloric acid, J. Colloid Interface Sci. 2006, 303, 415–418.
8. Y. Sun, Y. Xia, Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm, Analyst 2003, 128, 686-691.
9. C. Korsvik, S. Patil, S. Seal, W. T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles, Chem. Commun. 2007, 1056-1058.
10. S. S. Agasti, S. Rana, M.-H. Park, C. K. Kim, C.-C. You, V. M. Rotello, Nanoparticles for detection and diagnosis, Adv. Drug. Deliv. Rev. 2010, 62, 316-328.
11. E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev. 2006, 35, 583-592.
12. C. N. R. Rao, A. Muller, A. K. Cheetham, The chemistry of nanomaterials: synthesis, properties, and applications, Wiley-VCH, 2004.
13. E. Boysen, N. Boysen, Nanotechnology for Dummies, 2nd Edition, Wiley Inc., 2011.
14. P. Cherukuri, E. S. Glazer, S. A. Curley, Targeted hyperthermia using metal nanoparticles, Adv. Drug. Deliv. Rev. 2010, 62, 339-345.
15. A. J. Kulkarni, M. Zhou, Size-dependent thermal conductivity of zinc oxide nanobelts, Appl. Phys. Lett. 2006, 88, 141921.
16. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, P. E. Edwards, Size-dependent chemistry: properties of nanocrystals, Chem-Euro J. 2002, 8, 29-35.
17. A. Z. Wang, R. Langer, O. C. Farokhzad, Nanoparticle delivery of cancer drugs, Annu. Rev. Med. 2012, 63, 185-198.
18. S. K. Sahoo, S. Parveen, J. J. Panda, The present and future of nanotechnology in human health care, Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3, 20 – 31.
19. I. Matsui, Nanoparticles for electronic device applications: A brief review, J. Chem. Eng. Jpn. 2005, 38, 535-546.
20. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075.
21. L. Li, M. Fan, R. C. Brown, J. V. Leeuwen, J. Wang, W. Wang, Y. Song, P. Zhang, Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review, Crit. Rev. Env. Sci. Technol. 2006, 36, 405-431.
22. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents, NanoLett. 2005, 5, 473-477.
23. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, R. P. Van Duyne, Localized surface plasmon resonance biosensors, Nanomedicine 2006, 1, 219-228.
24. X.-M. Qian, S. M. Nie, Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications, Chem. Soc. Rev. 2008, 37, 912-920.
25. X. Chen, S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 2007, 107, 2891-2959.
26. G.-L. Wang, K.-L. Liu, Y.-M. Dong, X.-M. Wu, Z.-J. Li, C. Zhang, A new approach to light up the application of semiconductor nanomaterials for photoelectron chemical biosensors: Using self-operating photocathode as a highly selective enzyme sensor, Biosens. Bioelectron. 2014, 62, 66-72.
27. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller, Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chem. Rev. 2008, 108, 2064–2110.
28. D. Jaque, L. M. Maestro, B. del Rosal, P. H. Gonzalez, A. Benayas, J. L. Plaza, E. M. Rodriguez, J. G. Sole, Nanoparticles for photothermal therapies, Nanoscale 2014, 6, 9494-9530.
29. P. Guardia, R. D. Corato, L. Lartigue, C. Wilhelm, A. Espinosa, M. G. Hernandez, F. Gazeau, L. Manna, T. Pellegrino, Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment, ACS Nano 2012, 6, 3080-3091.
30. S. Yamaguchi, H. Kobayashi, T. Narita, K. Kanehira, S. Sonezaki, Y. Kubota, S. Terasaka, Y. Iwasaki, Novel Photodynamic Therapy Using Water-dispersed TiO2–Polyethylene Glycol Compound: Evaluation of Antitumor Effect on Glioma Cells and Spheroids In Vitro, Photochemistry and Photobiology 2010, 86, 964-971.
31. H. Zhang, Y. Shan, L. Dong, A Comparison of TiO2 and ZnO Nanoparticles as Photosensitizers in Photodynamic Therapy for Cancer, J. Biomed. Nanotechnol. 2014, 10, 1450-1457.
32. Y. Li, W. Lu, Q. Huang, C. Li, W. Chen, Copper sulfide nanoparticles for photothermal ablation of tumor cells, Nanomedicine 2010, 5, 1161-1171.
33. M. Schurenberg, K. Dreisewerd, F. Hillenkamp, Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes, Anal. Chem. 1999, 71, 221-229.
34. M. F. Huang, H. T. Chang, Detection of carbohydrates using surface-assisted laser desorption/ionization mass spectrometry with HgTe nanostructures, Chem. Sci. 2012, 3, 2147-2152.
35. D. J. Harvey, Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates and glycoconjugates, Int. J. Mass Spectrom. 2003, 226, 1-35.
36. E. Nordhoff, F. kirpekar, P. Roepstorff, Mass spectrometry of nucleic acids, Mass Spectrom. Rev. 1996, 15, 67-138.
37. J. Gobom, M. Schuerenberg, M. Mueller, D. Theiss, H. Lehrach, E. Nordhoff, -cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics, Anal. Chem. 2001, 73, 434–438.
38. S. K. Kailasa, K.-H. Cheng, H.-F. Wu, Semiconductor nanomaterials-based fluorescence spectroscopic and matrix-assisted laser desorption/ionization (MALDI) mass spectrometric approaches to proteome analysis, Materials 2013, 6, 5763-5795.
39. Y. E. Silina, D. A. Volmer, Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds, Analyst 2013,138, 7053-7065.
40. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, T. Matsuo, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 1988, 2, 151-153.
41. Y. E. Silina, F. Meier, V. A. Nebolsin, M. Koch, D. A. Volmer, Novel Galvanic Nanostructures of Ag and Pd for Efficient Laser Desorption/Ionization of Low Molecular Weight Compounds, J. Am. Soc. Mass Spectrom. 2014, 25, 841-851.
42. C. R. McAlpin, K. J. Voorhees, Extension of metal oxide laser ionization mass spectrometry to analytes with varied chemical functionalities, Rapid Commun. Mass Spectrom. 2013, 27, 1763-1768.
43. S. K. Kailasa, H.-F. Wu, Semiconductor cadmium sulphide nanoparticles as matrices for peptides and as co-matrices for the analysis of large proteins in matrix-assisted laser desorption/ionization reflectron and linear time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 2011, 25, 271-280.
44. H. Zhang , S. Cha , E. S. Yeung, Colloidal Graphite-Assisted Laser Desorption/Ionization MS and MSn of Small Molecules. 2. Direct Profiling and MS Imaging of Small Metabolites from Fruits, Anal. Chem. 2007, 79, 6575–6584.
45. C.-L. Wu, C.-C. Wang, Y.-H. Lai, H. Lee, J.-D. Lin, Y.-T. Lee, Y.-S. Wang, Selective Enhancement of Carbohydrate Ion Abundances by Diamond Nanoparticles for Mass Spectrometric Analysis, Anal. Chem. 2013, 85, 3836-3841.
46. A. Y. Lim, F. Gu, Z. Ma, J. Ma, F. Rowell, Doped amorphous silica nanoparticles as enhancing agents for surface-assisted time-of-flight mass spectrometry, Analyst 2011, 136, 2775-2785.
47. Z.-J. Zhu, V. M. Rotello, R. W. Vachet, Engineered nanoparticle surfaces for improved mass spectrometric analyses, Analyst 2009, 134, 2183-2188.
48. Q. Liang, T. Macher, Y. Xu, Y. Bao and C. J. Cassady, MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix, Anal. Chem. 2014, 86, 8496–8503.
49. C. Fleith, S. Cantel, G. Subra, A. Mehdi, J. Ciccione, J. Martinez, C. Enjalbal, Laser desorption ionization mass spectrometry of peptides on a hybrid CHCA organic–inorganic matrix, Analyst 2014, 139, 3748-3754.
50. F. Dall’Olio, Protein glycosylation in cancer biology: an overview, Clin. Mol. Pathol. 1996, 49, M126–M135.
51. C. Couldrey, J. E. Green, Metastases: the glycan connection, Breast Cancer Res. 2000, 2, 321–323.
52. C. A. Reis, H. Osorio, L. Silva, C. Gomes, L. David, Alterations in glycosylation as biomarkers for cancer detection, J. Clin. Pathol. 2010, 63, 322-329.
53. J. H. Rho, P. D. Lampe, High-throughput analysisof plasma hybrid markers for early detection of cancers, Proteomes 2014, 2, 1-17.
54. K. Marino, J. Bones, J. J. Kattla, P. M. Rude, A systematic approach to protein glycosylation analysis: a path through the maze, Nat. Chem. Biol. 2010, 6, 713-723.
55. C. Zhao, B. Xie, S.-Y. Chan, C. E. Costello, P. B. O’Connor, Collisionally activated dissociation and electron capture dissociation provide complementary structural information for branched permethylated oligosaccharides, J. Am. Soc. Mass Spectrom. 2008, 19, 138-150.
56. U. Lewandrowski, A. Resemann, A. Sickmann, Laser-induced dissociation/high-energy collision-induced dissociation fragmentation using MALDI-TOF/TOF-MS instrumentation for the analysis of neutral and acidic oligosaccharides, Anal. Chem. 2005, 77, 3274-3283.
57. J. T. Adamson, K. Hakansson, Electron capture dissociation of oligosaccharides ionized with alkali, alkaline earth, and transition metals, Anal. Chem. 2007, 79, 2901-2910.
58. X. Yu, Y. Jiang, Y. Chen, Y. Huang, C. E. Costello, C. Lin, Detailed Glycan Structural Characterization by Electronic Excitation Dissociation, Anal. Chem. 2013, 85, 10017–10021.
59. L. Han, C. E. Costello, Electron transfer dissociation of milk oligosaccharides, J. Am. Soc. Mass Spectrom. 2011, 22, 997-1013.
60. J. T. Adamson, K. Hakansson, Electron detachment dissociation of neutral and sialylated oligosaccharides, J. Am. Soc. Mass Spectrom. 2007, 18, 2162–2172.
61. B. Spengler, D. Kirsch, R. Kaufmann, Structure Analysis of Branched Oligosaccharides Using Post-source Decay in Matrix-assisted Laser Desorption Ionization Mass Spectrometry, J. Mass Spectrom. 1995, 30, 782-787.
62. H. Yang, Y. Yu, F. Song, S. Liu, Structural Characterization of Neutral Oligosaccharides by Laser-Enhanced In-Source Decay of MALDI-FTICR MS, J. Am. Soc. Mass Spectrom. 2011, 22, 845-855.
63. E. Hoffmann, V. Stroobant, Mass spectrometry: principles and applications, 3rd Edition, John Wiley and Sons Ltd. 2007.
64. S. Nicolardi, L. Switzar, A. M. Deelder, M. Palmblad, Y. E. M. van der Burgt, Top-down MALDI-in-source decay-FTICR mass spectrometry of isotopically resolved proteins, Anal. Chem. 2015, 87, 3429–3437.
65. M. J. Kailemia, L. Li, M. Ly, R. J. Linhardt, I. J. Amster, Complete mass spectral characterization of a synthetic ultralow-molecular-weight heparin using collision-induced dissociation, Anal. Chem. 2012, 84, 5475–5478.
66. P. T. Kasper, M. Rojas-Chert´o, R. Mistrik, T. Reijmers, T. Hankemeier, R. J. Vreeken, Fragmentation trees for the structural characterization of metabolites, Rapid Commun. Mass Spectrom. 2012, 26, 2275–2286.
67. P. Domann, D. I. R. Spencer, D. J. Harvey, Production and fragmentation of negative ions from neutral N-linked carbohydrates ionized by matrix-assisted laser desorption/ionization, Rapid Commun. Mass Spectrom. 2012, 26, 469–479.
68. Y. Mechref, M. V. Novotny, Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry, Anal. Chem. 2003, 75, 4895– 4903.
69. J. H. Zhang, K. Schubothe, B. S. Li, S. Russell, C. B. Lebrilla, Infrared multiphoton dissociation of O-linked mucin-type oligosaccharides, Anal. Chem. 2005, 77, 208–214.
70. A. H. Que, Y. Mechref, Y. Huang, J. A. Taraszka, D. E. Clemmer, M. V. Novotny, Coupling capillary electrochromatography with electrospray fourier transform mass spectrometry for characterizing complex oligosaccharide pools, Anal. Chem. 2003, 75, 1684–1690.
71. J. Zaia, Mass spectrometry of oligosaccharides, Mass Spectrom. Rev. 2004, 23, 161–227.
72. J. A. Stolee, B. N. Walker, V. Zorba, R. E. Russo, A. Vertes, Laser-nanostructure interactions for ion production, Phys. Chem. Chem. Phys. 2012, 14, 8453–8471.
73. A. C. S. Samia, S. Dayal, C. Burda, Quantum dot-based energy transfer: perspectives and potential for applications photodynamic theraphy, Photochem. Photobiol. 2006, 82, 617–625.
74. H. J. Yoon, W. D. Jang, Nanotechnology-based photodynamic therapy, J. Porphyr. Phthalocya. 2013, 17, 16–26.
75. Z. Zhao, Y. Han, C. Lin, D. Hu, F. Wang, X. Chen, Z. Chen, N. Zheng, Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells, Chem. Asian J. 2012, 7, 830–837.
76. P. Matteini, F. Ratto, F. Rossi, R. Pini, Emerging concepts of laser-activated nanoparticles for tissue bonding, J. Biomed. Opt. 2012, 17, 010701.
77. J. K. Young, E. R. Figueroa, R. A. Derezek, Tunable nanostructures as photothermal theranostic agents, Ann. Biomed. Eng. 2012, 40, 438–459.
78. I. Ocsoy, B. Gulbakan, M. I. Shukoor, X. Xiong, T. Chen, D. H. Powell, W. Tan, Aptamer-Conjugated Multifunctional Nanoflowers as a Platform for Targeting, Capture, and Detection in Laser Desorption Ionization Mass Spectrometry, ACS Nano 2013, 7, 417–427.
79. S. Xu, Y. Li, H. Zou, J. Qiu, Z. Guo, B. Guo, Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry, Anal. Chem. 2003, 75, 6191-6195.
80. M. C. Tseng, R. Obena, Y. W. Lu, P. C. Lin, P. Y. Lin, Y. S. Yen, J. T. Lin, L. D. Huang, K. L. Lu, L. Lai, L. C. C. Lin, Y. J. Chen, Dihydrobenzoic acid modified nanoparticle as a MALDI-TOF MS matrix for soft ionization and structure determination of small molecules with diverse structures, J. Am. Soc. Mass Spectrom. 2010, 21, 1930–1939.
81. R. P. Obena, P. C. Lin, Y. W. Lu, I. C. Li, F. del Mundo, S. Arco, G. M. Nuesca, C. C. Lin, Y. J. Chen, Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry, Anal. Chem. 2011, 83, 9337–9343.
82. Q. He, S. Chen, J. Wang, J. Hou, J. Wang, S. Xiong, Z. Nie, 1-Naphthylhydrazine hydrochloride: A new matrix for the quantification of glucose and homogentisic acid in real samples by MALDI-TOF MS, Clin. Chim. Acta. 2013, 420, 94–98.
83. R. Pilolli, F. Palmisano, N. Cioffi, Gold nanomaterials as a new tool for bioanalytical applications of laser desorption ionization mass spectrometry, Anal. Bioanal. Chem. 2012, 402, 601–623.
84. C. W. Liu, M. W. Chien, G. F. Chen, S. Y. Chen, C. S. Yu, M. Y. Liao, C. C. Lai, Quantum dot enhancement of peptide detection by matrix-assisted laser desorption/ionization mass spectrometry, Anal. Chem. 2011, 83, 6593–6600.
85. Y. P. He, Y. M. Miao, C. R. Li, S. Q. Wang, L. Cao, S. S. Xie, G. Z. Yang, B. S. Zou, C. Burda, Equilibrium magnetization in the vicinity of the first-order phase transition in the mixed state of high-Tc superconductors, Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 12511.
86. L. X. Chen, T. Liu, M. C. Thurnauer, R. Csenesits, T. Rajh, Fe2O3 Nanoparticle Structures Investigated by X-ray Absorption Near-Edge Structure, Surface Modifications, and Model Calculations,J. Phys. Chem. B 2002, 106, 8539–8546.
87. Y. S. Kang, S. Risbud, J. F. Rabolt, P. Stroeve, Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles, Chem. Mater. 1996, 8, 2209–2211.
88. B. Domon, C. E. Costello, A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates, Glycoconjugate J. 1988, 5, 397-409.
89. T. Yamagaki, H. Nakanishi, Post-source decay fragmentation analyses of linkage isomers of Lewis-type oligosaccharides in curved-field reflectron matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: combined in-source decay/post-source decay experiments and relative ion abundance analysis, J. Mass Spectrom. 2000, 35, 1300–1307.
90. J. A. Ferreira, M. R. Domingues, R. A. Monteiro, M. A. Coimbra, Differentiation of isomeric Lewis blood groups by positive ion electrospray tandem mass spectrometry, Anal. Biochem. 2010, 397, 186–196.
91. N. Viseux, E. de Hoffmann, B. Domon, Structural Analysis of Permethylated Oligosaccharides by Electrospray Tandem Mass Spectrometry, Anal. Chem. 1997, 69, 3193–3198.
92. M. T. Cancilla, A. W. Wong, L. R. Voss, C. B. Lebrilla, Fragmentation Reactions in the Mass Spectrometry Analysis of Neutral Oligosaccharides, Anal. Chem. 1999, 71, 3206–3218.
93. T. Yamagaki, H. Suzuki, K. Tachibana, A Comparative Study of the Fragmentation of Neutral Lactooligosaccharides in Negative-Ion Mode by UV-MALDI-TOF and UV-MALDI Ion-Trap/TOF Mass Spectrometry, J. Am. Soc. Mass Spectrom. 2006, 17, 67–74.
94. R. Zenobi, R. Kochenmuss, Ion formation in MALDI mass spectrometry, Mass Spectrom. Rev. 1998, 17, 337–366.
95. M. Wuhrer, A. M. Deelder, Matrix-assisted laser desorption/ionization in-source decay combined with tandem time-of-flight mass spectrometry of permethylated oligosaccharides: targeted characterization of specific parts of the glycan structure, Rapid Commun. Mass Spectrom. 2006, 20, 943-951.
96. G. Montaudo, F. Samperi, M. S. Montaudo, Characterization of synthetic polymers by MALDI-MS, Prog. Polym. Sci. 2006, 31, 277-357.
97. Y. Chen, A. E. Hagerman, Characterization of Soluble Non-covalent Complexes between Bovine Serum Albumin and β-1,2,3,4,6-Penta-O-galloyl-D-glucopyranose by MALDI-TOF MS, J. Agric. Food Chem. 2004, 52, 4008–4011.
98. M. Karas, R. Kruger, Ion formation in MALDI: the cluster ionization mechanism, Chem. Rev. 2003, 103, 427-439.
99. R. Knochenmuss, Ion formation mechanism in UV-MALDI, Analyst 2006, 131, 966-986.
100. H. Ehring, M. Karas, F. Hillenkamp, Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption/ionization mass spectrometry, Org. Mass Spectrom. 1992, 27, 472-480.
101. R. Knochenmuss, R. Zenobi, MALDI ionization: the role of in-plume processes, Chem. Rev. 2003, 103, 441-452.
102. D. J. Harvey, A. P. Hunter, R. H. Bateman, J. Brown, G. Critchley, Relationship between in-source and post-source fragment ions in the matrix-assisted laser desorption (ionization) mass spectra of carbohydrates recorded with reflectron time-of-flight mass spectrometers, Int. J. Mass Spectrom. 1999,188, 131–146.
103. V. Gabelica, E. Schulz, M. Karas, Internal energy build-up in matrix-assisted laser desorption/ionization, J. Mass Spectrom. 2004, 39, 579–593.
104. T. Köcher, Å. Engström, R. A. Zubarev, Fragmentation of Peptides in MALDI In-Source Decay Mediated by Hydrogen Radicals, Anal. Chem. 2005, 77, 172–177.
105. M. Takayama, N-C Bond Cleavage of the Peptide Backbone via Hydrogen Abstraction, J. Am. Soc. Mass Spectrom. 2001, 12, 1044–1049.
106. H. Ehring, B. U. R. Sundqvist, Studies of the MALDI process by luminescence spectroscopy, J. Mass. Spectrom. 1995, 30, 1303-1310.
107. K. Dreisewerd, The desorption process in MALDI, Chem. Rev. 2003, 103, 395-425.
108. D. A. Allwood, P. E. Dyer, R. W. Dreyfus, I. K. Perera, Plasma modelling of matrix assisted UV laser desorption ionisation MALDI, Appl. Surf. Sci. 1997, 109/110, 616–620.
109. V. E. Frankevich, J. Zhang, S. D. Friess, M. Dashtiev, R. Zenobi, Role of Electrons in Laser Desorption/Ionization Mass Spectrometry, Anal. Chem. 2003, 75, 6063–6067.
110. R. P. Obena, M.-C. Tseng, I. Primadona, J. Hsiao, I-C. Li, R. Y. Capangpangan, H.-F. Lu,W.-S. Li, I. Chao, C.-C. Lin, Y.-J Chen, UV-activated multilayer nanomatrix provides one-step tunable carbohydrate structural characterization in MALDI-MS, Chem. Sci. 2015, 6, 4790-4800.
111. L. C. Ngoka, J.-F. Gal, C. B. Lebrilla, Effects of Cations and Charge Types on the Metastable Decay Rates of Oligosaccharides, Anal. Chem. 1994, 66, 692-698.
112. Y. Cai, Y. Jiang, R. B. Cole, Anionic adducts of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Anal. Chem. 2003, 75, 1638-1644.
113. M. T. Cancilla, S. G. Penn, J. A. Carroll and C. B. Lebrilla, Coordination of Alkali Metals to Oligosaccharides Dictates Fragmentation Behavior in Matrix Assisted Laser Desorption Ionization/Fourier Transform Mass Spectrometry, J. Am. Chem. Soc. 1996, 118, 6736–6745.
114. Y. H. Lai, C. C. Wang, C. W. Chen, B. H. Liu, S. H. Lin, Y. T. Lee, Y. S. Wang, Analysis of initial reactions of MALDI based on chemical properties of matrixes and excitation condition, J. Phys. Chem. B 2012, 116, 9635-9643.
115. E. Lourantos, O. M. Ramirez, A. E. Giannakopulos, K. A. Beran, P. J. Derrick, S. Bashir, The use of a silica-based heat sink to “uncouple” the matrix-assisted laser desorption/ionization (MALDI) mechanism, Can. J. Chem. 2011, 89, 446–460.
116. H. Ehring, M. Karas, F. Hillenkamp, Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption ionization mass spectrometry, J. Mass Spectrom. 1992, 27, 472–480.
117. K. Hosaka, A. Yokoyama, K. Yamanouchi, R. Itakura, Correlation between a photoelectron and a fragment ion in dissociative ionization of ethanol in intense near-infrared laser fields, J. Chem. Phys. 2013, 138, 204301.
118. D. M. Sherman, Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals, Phys. Chem. Miner. 1987, 14, 355–363.
119. H. Gerisher, Electron-transfer kinetics of redox reactions at the semiconductor/electrolyte contact. A new approach, J. Phys. Chem. 1991, 95, 1356–1359.
120. F. N. Skomurski, S. Kerisit, K. M. Rosso, Structure, charge distribution, and electron hopping dynamics in magnetite (Fe3O4) (1 0 0) surfaces from first principles, Geochim. Cosmochim. Acta 2010, 74, 4234–4248.
121. B. H. Liu, O. P. Charkin, N. Klemenko, C. W. Chen, Y. S. Wang, Initial ionizationreaction in matrix-assistedlaser desorption/ionization, J. Phys. Chem. B 2010, 114, 10853-10859.
122. J. Zhang, T. K. Ha, R. Knochenmuss, R. Zenobi, Theoretical calculation of gas-phase sodium binding energies of common MALDI matrices. J. Phys. Chem. 2002, 106, 6610-6617.
123. J. Zhang, E. Dyachkova, T. K. Ha, R. Knochenmuss, R. Zenobi, Gas-phase Potassium binding energies of MALDI matrices: an experimental and theoretical study, J. Phys. Chem A. 2003, 107, 6891-6900.
124. S. Poulin, R. Franc, L. Moreau-B´elanger, E. Sacher, Confirmation of X-ray Photoelectron Spectroscopy Peak Attributions of Nanoparticulate Iron Oxides, Using Symmetric Peak Component Line Shapes, J. Phys. Chem. C 2010, 114, 10711–10718.
125. G. Luo, I. Marginean, A. Vertes, Internal Energy of Ions Generated by Matrix-Assisted Laser Desorption/Ionization, Anal. Chem. 2002, 74, 6185–6190.
126. M. C. Huberty, J. E. Vath, W. Yu, S. A. Martin, Site-specific carbohydrate identification in recombinant proteins using MALD-TOF MS, Anal. Chem. 1993, 65, 2791-2800.
127. H. Yang, M. Li, Z. Li, S. Liu, Gas-phase fragmentation of oligosaccharides in MALDI laser-enhanced in-source decay induced by thermal hydrogen radicals, Analyst 2012, 137, 3624.
128. A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, M. E. Etzler, Essentials of glycobiology, 2nd Edition, Cold Spring Harbor (NY), 2009.
129. R. A. Dwek, Glycobiology: Toward Understanding the Function of Sugars, Chem. Rev. 1996, 96, 683−720.
130. R. J. S. Preston, O. Rawley, E. M. Gleeson, J. S. O’Donnell, Elucidateing the role of carbohydrate determinants in regulating hemostatis: insights and opportunities, Blood 2013, 121, 3801-3810.
131. Y. Tian, H. Zhang, Glycoproteomics and clinical applications, Proteomics Clin. Appl. 2010, 4, 124-132.
132. R. D. Cummings, J. M. Pierce, Handbook of Glycomics, 1st edition, Elsevier Inc. 2009.
133. S. Grünewald, G. Matthijs, J. Jaeken, Congenital disorders of glycosylation: A Review, Pediatric Research 2002, 52, 618-624.
134. K. Noda, E. Miyoshi, J. Gu, C.-X. Gao, S. Nakahara, T. Kitada, K. Honke, K. Suzuki, H. Yoshihara, K. Yoshikawa, K. Kawano, M. Tonetti, A. Kasahara, M. Hori, N. Hayashi, N. Taniguchi, Relationship between Elevated FX Expression and Increased Production of GDP-L-Fucose, a Common Donor Substrate for Fucosylation in Human Hepatocellular Carcinoma and Hepatoma Cell Lines, Cancer Research 2003, 63, 6282–6289.
135. U. M. A. Hamid, L. Royle, R. Saldova, C. M. Radcliffe, D. J. Harvey, S. J. Storr, M. Pardo, R. Antrobus, C. J. Chapman, N. Zitzmann, J. F. Robertson, R. A. Dwek, P. M. Rudd, A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression, Glycobiology 2008, 18, 1105–1118.
136. T. W. D. Graaf, M. E. Van der Stelt, M. G. Anbergen, W. van Dijk, Inflammation-induced Expression of Sialyl Lewis X-containing Glycan Structures on 1-Acid Glycoprotein (Orosomucoid) in Human Sera, J. Exp. Med. 1993, 177, 657-666.
137. C. M. Nycholat, R. McBride, D. C. Ekiert, R. Xu, J. Rangarajan, W. Peng, N. Razi, M. Gilbert, W. Wakarchuk, I. A. Wilson, J. C. Paulson, Recognition of sialylated poly‐N‐acetyllactosamine chains on N‐and O‐linked glycans by human and avian influenza A virus hemagglutinins, Angew. Chem. Int. Ed. 2012, 51, 4860-4863.
138. M. Pabst, F. Altmann, Glycan analysis by modern instrumental methods, Proteomics 2011, 11, 631-643.
139. W. Morelle, J. C. Michalski, The mass spectrometric analysis of glycoproteins and their glycan structures, Curr. Anal. Chem. 2005, 1, 29-57.
140. M. A. Fentabil, R. Daneshfar, E. N. Kitova, J. S. Klassen, Blackbody Infrared Radiative Dissociation of Protonated Oligosaccharides, J. Am. Soc. Mass Spectrom. 2011, 22, 2171-2178.
141. Y. Xie, C. B. Lebrilla, Infrared Multiphoton Dissociation of Alkali Metal-Coordinated Oligosaccharides, Anal. Chem. 2003, 75, 1590-1598.
142. M. Froesch, L. Bindila, A Zamfir, J. P. Katalinic, Sialylation analysis of O-glycosylated sialylated peptides from urine of patients suffering from Schindler's disease by Fourier transform ion cyclotron resonance mass spectrometry and sustained off-resonance irradiation collision-induced dissociation, Rapid. Commun. Mass Spectrom. 2003, 17, 2822-2832.
143. D. J. Harvey, Structural determination of N-linked glycans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry, Proteomics 2005, 5, 1774-1786.
144. Y. Gholipour, S. L. Giudicessi, H. Nonami, R. E. Balsells, Diamond, Titanium Dioxide, Titanium Silicon Oxide, and Barium Strontium Titanium Oxide Nanoparticles as Matrixes for Direct Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis of Carbohydrates in Plant Tissues, Anal. Chem. 2010, 82, 5518-5526.
145. H. J. Yang, A. Lee, M. K. Lee, W. Kim, J. Kim, Detection of Small Neutral Carbohydrates Using Various Supporting Materials in Laser Desorption/Ionization Mass Spectrometry, Bull. Korean Chem. Soc. 2010, 31, 35-40.
146. C.A. Slack, Thermal conductivity of II-VI compounds and phonon scattering by Fe2+ impurities, Phys. Rev. 1972, 6, 3791-3800.
147. J. Molgaard, W. W. Smeltzer, Thermal conductivity of magnetite and hematite, J. Appl. Phys. 1971, 42, 3644-3647.
148. W. R. Thurber, A. J. H. Mante, Thermal conductivity of thermoelectric power of rutile (TiO2), Phys. Rev. 1965, 139, A1655-A1665.
149. D. I. Florescu, L. G. Mourokh, F. H. Pollak, D. C. Look, G. Cantwell, X. Li, High spatial resolution thermal conductivity of bulk ZnO (0001), J. Appl. Phys. 2002, 91, 890-892.
150. Y. Yang, M. Y. Gao, Preparation of Fluorescent SiO2 Particles with Single CdTe Nanocrystal Cores by the Reverse Microemulsion Method, Adv. Mater. 2005, 17, 2354-2357.
151. S. H. Pazokifard, S. M. Mirabedini, M. Esfandeh, M. Mohseni, Z. Ranjbar, Silane grafting of TiO2 nanoparticles: dispersibility and photoactivity in aqueous solutions, Surf. Interface Anal. 2012, 44, 41-47.
152. J. Zhai, X. Tao, Y. Pu, X.-F. Zeng, J.-F. Chen, Core/shell structured ZnO/SiO2 nanoparticles: Preparation, characterization and photocatalytic property, Applied Surf. Sci. 2010, 257, 393-397.
153. E. Girgis, M. M. S. Wahsh, A. G. M. Othman, L. Bandhu, K. V. Rao, Synthesis, magnetic and optical properties of core/shell Co1-x Zn xFe2O4/SiO2 nanoparticles, Nanoscale Res. Lett. 2011, 6, 460-467.
154. H. F. Liang, Z. C. Wang, Adsorption of bovine serum albumin on functionalized silica-coated magnetic MnFe2O4 nanoparticles, Mater. Chem. Phys. 2010, 124, 964-969.
155. P. Lorkiewicz, M. C. Yappert, Titania Microparticles and Nanoparticles as Matrixes for in Vitro and in Situ Analysis of Small Molecules by MALDI-MS, Anal. Chem. 2009, 81, 6596-6603.
156. D. H. Dube, C. R. Bertozzi, Glycans in cancer and inflammation potential for therapeutics and diagnostics, Nat. Rev. Drug Discov. 2005, 4, 477-488.
157. W. Morelle, J. C. Michalski, Analysis of protein glycosylation by mass spectrometry, Nat. Protoc. 2007, 2, 1585-1602.
158. Y. Mechref, P. Kang, M. V. Novotny, Differentiating structural isomers of sialylated glycans by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry, Rapid Commun. Mass Spectrom. 2006, 20, 1381-1389.
159. S. S. Pinho, C. A. Reis, Glycosylation in cancer: mechanisms and clinical implications, Nat. Rev. Cancer 2015, 15, 540-555.
160. H. K. Einarsdottir, M. H. J. Selman, R. Kapur, S. Scherjon, C. A. M. Koeleman, A. M. Deelder, C. E. van der Schoot, G. Vidarsson, M. Wuhrer, Comparison of the Fc glycosylation of fetal and maternal immunoglobulin G, Glycoconj J. 2013, 30, 147-157.
161. D. J. Harvey, Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates, Mass Spectrom. Rev. 1999, 18, 349-451.
162. D. J. Harvey, L. Royle, C. M. Radcliffe, P. M. Rudd, R. A. Dwek, Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry, Anal. Biochem. 2008, 376, 44-60.
163. H. L. Alaoui, A. McKinney, Y. W. Yang, V. M. Tran, J. J. Phillips, Chapter Nine –Glycosylation Alterations in Lung and Brain Cancer, Adv. Cancer Res. 2015, 126, 305-344.
164. M. Cho, R. D. Cummings, Galectin-1: Oligomeric Structure and Interactions with Polylactosamine, Trends Glycosci. Glyc. 1997, 9, 47-56.
165. J. M. Berg, J. L. Tymoczko, L. Stryer, Biochemistry, 5th Edition, New York: W H Freeman and company, 2002.
166. J. Montreuil, J. F. G. Vliegenthart, H. Schachter, Glycoproteins I, 1st Edition, Elsevier Science, 1995.
167. R. S. Haltiwanger, J. B. Lowe, Role of glycosylation in development, Annu. Rev. Biochem. 2004, 73, 491-537.
168. J. W. Dennis, M. Granovsky, C. E. Warren, Protein glycosylation in development and disease, Bioessays 1999, 21, 412-421.
169. K. Ohtsubo, J. D. Marth, Glycosylation in Cellular Mechanisms of Health and Disease, Cell 2006, 126, 855-867.
170. M. Brownlee, Advanced protein glycosylation in diabetes and aging, Annu. Rev.Med. 1995, 46, 223-234
171. J. B. Lowe, J. D. Marth, A Genetic Approach to Mammalian Glycan Function, Annu. Rev. Biochem. 2003, 72, 643-691.
172. C.-C. Chen, W.-C. Su, B.-Y. Huang, Y.-J. Chen, H.-C. Tai, R. P. Obena, Interaction modes and approaches to glycopeptide and glycoprotein enrichment, Analyst 2014, 139, 688–704.
173. H. Geyer, R. Geyer, Strategies for analysis of glycoprotein glycosylation, Biochim. Biophys. Acta, 2006, 1764, 1853–1869.
174. M. Wuhrer, M. I. Catalina, A. M. Deelder, C. H. Hokke, Glycoproteomics based on tandem mass spectrometry of glycopeptides, J. Chromatogr. B 2007, 849, 115-128.
175. B. A. Budnik, R.S. Lee, J. A. J. Steen, Global methods for protein glycosylation analysis by mass spectrometry, Biochim. Biophys. Acta 2006, 1764, 1870–1880.
176. G. E. Reid, J. L. Stephenson, S. A. McLuckey, Tandem Mass Spectrometry of Ribonuclease A and B: N-Linked Glycosylation Site Analysis of Whole Protein Ions, Anal. Chem. 2002, 74, 577-583.
177. V. Kannan, P. Narayanaswamy, D. Gadamsetty, P. Hazra, A. Khedkar, H. Iyer, A tandem mass spectrometric approach to the identification of O-glycosylated glargine glycoforms in active pharmaceutical ingredient expressed in Pichia pastoris, Rapid Commun. Mass Spectrom. 2009, 23, 1035–1042.
178. R. A. Zubarev, D. M. Horn, E. K. Fridriksson, N. L. Kelleher, N. A. Kruger, M. A. Lewis, B. K. Carpenter, F. W. McLafferty, Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations, Anal. Chem. 2000, 72, 563–573.
179. R. A. Zubarev, N. L. Kelleher, F. W. McLafferty, Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process, J. Am. Chem. Soc. 1998, 120, 3265–3266.
180. E. Mirgorodskaya, P. Roepstorff, R.A. Zubarev, Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer, Anal. Chem. 1999, 71, 4431–4436.
181. K. Hakansson, H.J. Cooper, M.R. Emmett, C.E. Costello, A.G. Marshall, C.L. Nilsson, Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information, Anal. Chem. 2001, 73, 4530–4536.
182. J.E. Syka, J.J. Coon, M.J. Schroeder, J. Shabanowitz, D.F. Hunt, Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry, Proc. Natl. Acad. Sci. 2004, 101, 9528–9533.
183. J.M. Hogan, S.J. Pitteri, P.A. Chrisman, S.A. McLuckey, Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation, J. Proteome Res. 2005, 4, 628–632.
184. M. Wuhrer, C. H. Hokke, A. M. Deelder, Glycopeptide analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry reveals novel features of horseradish peroxidase glycosylation, Rapid Commun. Mass Spectrom. 2004, 18, 1741–1748.
185. S. Albonetti, R. Mazzoni, F. Cavani, RSC Green Chemistry: Homogeneous, Heterogeneous and Nanocatalysis, in Transition Metal Catalysis in Aerobic Alcohol Oxidation, The Royal Society of Chemistry, 2015, 1-39.
186. C. O. Kappe, D. Dallinger, The impact of microwave synthesis on drug discovery, Nat. Rev. Drug Discov. 2006, 5, 51-63.
187. S.-S. Lin, C.-H.Wu, M.-C. Sun, C.-M. Sun, Y.-P. Ho, Microwave-assisted enzyme-catalyzed reactions in various solvent systems, J. Am. Soc. Mass Spectrom. 2005, 16, 581–588.
188. Z. Hu, Z. Wen, Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment, Biochem. Eng. J. 2008, 38, 369–378.
189. W. N. Sandoval, F. Arellano, D. Arnott, H. Raab, R. Vandlen, J. R. Lill, Rapid removal of N-linked oligosaccharides using microwave assisted enzyme catalyzed deglycosylation, Int. J. Mass Spectrom. 2007, 259, 117–123.
190. W.-Y. Chen, Y.-C. Chen, Acceleration of Microwave-Assisted Enzymatic Digestion Reactions by Magnetite Beads, Anal. Chem. 2007, 79, 2394–2401.
191. G. Xu, X. Chen, J. Hu, P. Yang, D. Yang, L. Wei, Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis, Analyst 2012,137, 2757-2761
192. N. Hasan, H.-F. Wu, Y.-H. Li, Two-step on-particle ionization/enrichment via a washing- and separation-free approach: multifunctional TiO2 nanoparticles as desalting, accelerating, and affinity probes for microwave-assisted tryptic digestion of phosphoproteins in ESI-MS and MALDI-MS: comparison with microscale TiO2, Anal. Bioanal. Chem. 2010, 396, 2909-2919.
193. K. Shrivas, S. K. Kailasa, H.-F. Wu, Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS, Proteomics 2009, 9, 2656–2667.
194. D. J. Becker, J. B. Lowe, Fucose: biosynthesis and biological function in mammals, Glycobiology, 2003, 13, 41R-53R.