簡易檢索 / 詳目顯示

研究生: 王佑立
Wang, Yu Li
論文名稱: 以奈米壓印技術開發氮化鎵量子結構晶格及其光電應用之研究
Development of GaN-Based Quantum Structure Lattice Arrays for Photonic Applications Using Nanoimprint Lithography
指導教授: 鄭克勇
Cheng, Keh Yung
口試委員: 謝光前
吳孟奇
吳肇欣
林瑞明
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 99
中文關鍵詞: 量子結構晶格奈米壓印氮化鎵氮化銦鎵
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以一特異人造晶格結構”量子結構晶格”為主幹之光電元件研究,並已成功在氮化鎵/氮化銦鎵異質結構上製作出量子結構晶格及相關光電元件。首先,使用時域有限差分法之模擬方式,模擬出氮化鎵/氮化銦鎵單層量子井和量子結構晶格之輻射場圖。模擬結果顯示,藉由設計量子結構晶格之晶格週期,可以改變氮化鎵/氮化銦鎵結構發射頻譜之輻射場圖,且在低階布拉格繞射模態下,具有較佳之光聚束效果。其次,開發軟性奈米壓印技術以製作晶圓尺寸級之週期性奈米結構,其原理為使用一透明高分子材料”聚二甲基矽氧甲烷”作為模具,並將奈米圖案透過翻模之過程,將圖案資訊從矽母片轉印至模具上,而後,將模具壓印於已塗佈奈米光阻之樣品上,並使用汞燈進行光阻固化,即完成奈米圖案之轉印。實驗結果證明,此技術已可在兩吋之矽晶圓上達到全面均勻之奈米圖案。
    本研究使用軟性奈米壓印技術於氮化鎵/氮化銦鎵結構上製作量子結構晶格。從模擬與實驗結果皆證實,製作量子結構晶格之樣品具有較窄之輻射場圖。且藉由改變量子結構晶格的週期或氮化銦鎵之銦含量,可以控制樣品發射頻譜之波長與輻射場圖。此外,量子井所產生的光會在薄膜間多重反射,而在光致發光頻譜中產生數個干涉峰。為了消除此干涉效應,本研究發展出以半經驗頻譜干涉法消除氮化鎵薄膜與藍寶石基板間的干涉效應,其原理為使用薄膜間干涉效應所產生之多重峰波長位置,帶入餘弦方程式,進而推導出相對應之特性干涉方程式,並利用矩陣實驗室(Matlab)之軟體,繪製出干涉頻譜,以消除原始頻譜中的干涉效應。實驗結果證實,此方法為一快速且簡易之干涉頻譜校正方式。
    最後,本研究已成功將氮化鎵/氮化銦鎵量子結構晶格製作於發光二極體中,並提出三種不同製程方式之量子結構晶格發光二極體,其中包含蝕刻結合二次磊晶、離子佈植結合二次磊晶和離子佈植等三種製作方式。實驗結果顯示,在主動區製作量子結構晶格元件之電致發光頻譜具有光聚束之效果,且蝕刻結合二次磊晶與離子佈植所製成之元件的輻射場圖皆在發散角度10°內具有較佳之聚束效果。


    In this dissertation, an artificial structure “Quantum Structure Lattice (QSL)” fabricated on InGaN/GaN quantum well (QW) heterostructure has been demonstrated. At first, the numerical analysis method “finite-difference time-domain (FDTD)” is employed to simulate the radiation pattern of bulk single quantum well (SQW) and QSL arrays embedded in SQW. The simulation results illustrate that the QSL arrays with appropriate design has potential to control the surface radiation pattern of the structure. Furthermore, collimated radiation pattern can be observed clearly in QSL array that fulfills lower orders of Bragg diffraction condition. Second, QSL array fabrication process over whole wafer has been achieved using soft nanoimprint lithography (soft-NIL). The soft-NIL process was realized by employing a transparent polydimethylsiloxane (PDMS) mold to transfer nano-patterns into the substrate by deforming the photoresist coated substrate surface and cured by employing an ultra-violate light. The experiment results show that the soft-NIL works well to transfer ultra-uniform nano-pattern onto 2” substrates.
    The well-developed soft-NIL is used to fabricate QSL arrays from the active region of the GaN/InGaN heterostructure. The photoluminescence (PL) measurements illustrate that the QSL array has the ability to control the radiation pattern of the spontaneous emission, and the experimental results are verified by the FDTD simulations.
    In PL measurements of GaN-on-sapphire structures, multiple peaks in PL spectrum are commonly observed, which causes ambiguity in interpreting the real PL peak position. This is caused by multiple light reflections in air/(In)GaN/Sapphire thin layer structures. In order to extract the correct emission peak from the measured PL spectrum, a semi-empirical method has been developed to eliminate the interference (Fabry-Perot) effect. Using three selected interference peaks in the measured PL spectrum to deduce the interference function (IF) of the thin layer structure, the corrected spectrum can be derived. The experiment results illustrate that the semi-empirical method is a fast and simple way to correct the distorted PL spectrum caused by multilayer interference.
    Finally, QSL arrays are integrated into the active region of multiple quantum wells light emitting diode (LED) structures. Three different QSL fabrication methods are proposed, which include GaN regrowth after reactive-ion etching (RIE) etching, GaN regrowth after ion-implantation, and direct ion-implantation techniques. Electroluminescence (EL) spectra illustrate that QSL MQW-LEDs show collimated characteristic radiation patterns similar to those from a single QSL array heterostructure.

    TABLE OF CONTENTS CHAPTER 1 INTRODUCTION 1 CHAPTER 2 DESIGN OF QUANTUM STRUCTURE LATTICE ARRAY 4 2.1 Theoretical Model of QSL 4 2.2 Design of InGaN/GaN Heterostructure 6 2.3 Finite-difference Time-domain Simulation Method 9 2.4 Simulation Results of InGaN/GaN QSL Arrays 16 CHAPTER 3 FABRICATION OF QSL ARRAYS BY SOFT-NANOIMPRINT LITHOGRAPHY 26 3.1 Soft Nanoimprint Lithography (NIL) Technique 26 3.2 Fabrication of Flexible NIL Mold 29 3.3 Nanoscale Pattern Transfer 33 3.4 Wafer-Scale Soft-NIL Technique 38 3.5 Process Development of InGaN/GaN QSL Arrays 48 CHAPTER 4 CHARACTERIZATION OF InGaN/GaN QSL ARRAYS 51 4.1 Correction of Interference Effect in Photoluminescence Spectra 51 4.1.1 Background 51 4.1.2 Current PL Correction Approaches: 52 4.1.3 A Versatile Semi-Empirical Correction Method 59 4.1.4 Semi-empirical Method Results and Discussions 60 4.2 Characterization and Comparison of InGaN/GaN QSL Arrays 67 CHAPTER 5 InGaN/GaN LIGHT-EMITTING DIODES WITH QSL ARRAY ACTIVE REGION 73 5.1 QSL-LED Process Development 74 5.1.1 QSL Formation: 74 5.1.2 LED fabrication processes: 76 5.2 Characterization of QSL-LEDs 80 CHAPTER 6 CONCLUSION AND FUTURE WORK 89 6.1 Summary 89 6.2 Future Work 90 6.2.1 Soft-NIL Technique 90 6.2.2 QSL Arrays and Related Devices 91 REFERENCES 93 AUTHOR’S BIOGRAPHY 99

    [1] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter and A. Scherer,” 30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes”, Applied Physics Letters, vol. 63, pp.2174, 1993.
    [2] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura,” Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Applied Physics Letters, vol. 84, pp.855, 2004.
    [3] K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa and D. Ueda,” High-Extraction-Efficiency Blue Light-Emitting Diode Using Extended-Pitch Photonic Crystal”, Japanese Journal of Applied Physics, vol. 43, pp.5809, 2004.
    [4] H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee,” Laser Liftoff GaN Thin-Film Photonic Crystal GaN-Based Light-Emitting Diodes”, Photonics Technology Letters, vol. 20, pp.2096, 2008.
    [5] E. Matioli, M. Iza, Y. S. Choi, F. Wu, S. Keller, H. Masui, E. Hu, J. Speck, and C. Weisbuch, “GaN-based embedded 2D photonic crystal LEDs: Numerical optimization and device characterization”, Physica status solidi (c), vol. 6, no. S2, pp.S675-S679, 2009.
    [6] E. Matioli, B. Fleury, E. Rangel, T. Melo, E. Hu, J. Speck, and C. Weisbuch, “High Extraction Efficiency GaN-Based Photonic-Crystal Light-Emitting Diodes: Comparison of Extraction Lengths between Surface and Embedded Photonic Crystals”, Applied Physics Express, vol. 3, 032103, 2010.
    [7] E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes”, Applied Physics Letters, vol. 98, 081104, 2011.
    [8] K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. DenBaars, J. S. Speck, C. Weisbuch and E. L. Hu,” Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes”, Applied Physics Letters, vol. 93, pp.103502, 2008.
    [9] W. N. Ng, C. H. Leung, P. T. Lai and H. W. Choi,” Photonic crystal light-emitting diodes fabricated by microsphere lithography”, Nanotechnology, vol. 19, pp.255302, 2008.
    [10] Y. Yang and X. A. Cao, “Complete suppression of surface leakage currents in microperforated blue light-emitting diodes”, Applied Physics Letters, vol. 95, pp.011109, 2009.
    [11] H. S. Yang, S. Y. Han, K. H. Baik, S. J. Pearton and F. Ren, “Effect of inductively coupled plasma damage on performance of GaN–InGaN multi quantum-well light-emitting diodes”, Applied Physics Letters, vol. 86, pp.102104, 2005.
    [12] K. Y. Cheng, C. C. Cheng, and K. C. Hsieh, “Control of spontaneous emission in InGaAs/GaAs quantum structure lattices”, Applied Physics Letters, vol. 99, pp.163106, 2011.
    [13] K. Y. Cheng, C. C. Cheng, and K. C. Hsieh, “Two-dimensional distributed-feedback in InGaAs/GaAs quantum structure lattice arrays”, Applied Physics Letters, vol. 101, pp.141127, 2012.
    [14] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Nanoimprint lithography”, Journal of Vacuum Science & Technology B, vol. 14, pp.4129-4133, 1996.
    [15] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo and L. Zhuang, “Sub-10 nm imprint lithography and applications”, Journal of Vacuum Science & Technology B, vol. 15, pp.2897-2904, 1997.
    [16] K. Meneou and K. Y. Cheng, “Soft photocurable nanoimprint lithography for compound semiconductor nanostructures”, Journal of Vacuum Science & Technology B, vol. 26, pp.156-158, 2008.
    [17] R.D. Burnham, D.R. Scifres and W. Streifer, “Single-heterostructure distributed-feedback GaAs-diode lasers”, IEEE Journal of Quantum Electronics, vol. 11, pp.439-449, 1975.
    [18] E. Yablonovich, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical Review Letters, vol. 58, pp.2059-2062, 1987.
    [19] S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Physical Review Letters, vol. 58, pp.2486-2489, 1987.
    [20] G. Björk, S. Machida, Y. Tamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures”, Physical Review A, vol. 44, pp. 669-681, 1991.
    [21] H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities”, Applied Physics Letters, vol. 57, pp.2814-2816, 1990.
    [22] D. M. Sullivan, Electromagnetic simulation using the FDTD method, John Wiley & Sons, Inc., New Jersey, 2013.
    [23] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of Computational Physics, vol. 114, pp.185-200, 1994.
    [24] A. Taflove, Computational Electromagnetics: The Finite-Difference Time- Domain Method, Artech House, Boston, 2005.
    [25] See https://www.lumerical.com for FDTD solutions, Lumerical Solutions, Inc.
    [26] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint lithography with 25 nanometer resolution”, Science, vol. 272, pp.86-87, 1996.
    [27] J. Haisma, M. Verheijen, K. van den Heuvel and J. van den Berg, “Mold‐assisted nanolithography: A process for reliable pattern replication”, Journal of Vacuum Science & Technology B, vol. 14, no. 6, pp.4124-4128, 1996.
    [28] M. Bender, A. Fuchs, U. Plachetka, H. Kurz, “Status and prospects of UV-Nanoimprint technology”, Microelectronic Engineering, vol. 83, no. 4-9, pp.827830, April-Sep, 2006.
    [29] M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, C. G. Willson, “Nanofabrication with step and flash imprint lithography”, Journal of Microlithography, Microfabrication, and Microsystems, vol. 5, pp.011002, March 2005.
    [30] Y. Xia and G. M. Whitesides, “Soft lithography”, Annual Review of Materials Science, vol. 28, pp.153-184, August 1998.
    [31] Y. Xia and G. M. Whitesides, “Soft lithography”, Angewandte Chemie International Edition, vol. 37, pp.550-575, March 1998.
    [32] M. Mrksich, C. S. Chen, Y. Xia, L. E. Dike, D. E. Ingber, and G. M. Whitesides, “Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold”, Proceedings of the National Academy of Sciences, vol. 93, no.20, pp.10775-10778, Oct. 1996.
    [33] J. L. Wilbur, A. Kumar, E. Kim and G. M. Whitesides, “Microfabrication by microcontact printing of self-assembled monolayers”, Advanced Materials, vol. 6, no. 7-8, pp.600-604, July/Aug. 1994.
    [34] P. C. Hidber , W. Helbig , E. Kim , and G. M. Whitesides, “Microcontact Printing of Palladium Colloids:  Micron-Scale Patterning by Electroless Deposition of Copper”, Langmuir, vol. 12, no.5, pp.1375-1380, March 1996.
    [35] Y. Chen, E. Roy, Y. Kanamori, M. Belotti and D. Decanini, “Soft nanoimprint lithography”, SPIE Proceedings, vol. 5645, pp.293-288, Nov. 08, 2004, Beijing, China.
    [36] U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner and H. Kurz, “Wafer scale patterning by soft UV-Nanoimprint Lithography”, Microelectronic Engineering, vol. 73-74, pp.167-171, June 2004.
    [37] U. Srinivasan, M. R. Houston, R. T. Howe and R. Maboudian, “Alkyltrichlorosilane-Based Self-Assembled Monolayer Films for Stiction Reduction in Silicon Micromachines”, Journal of Microelectromechanical Systems, vol. 7, no. 2, pp.252-260, June 1998.
    [38] R. Maboudian, W. R. Ashurst and C. Carraro, “Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments”, Sensors and Actuators A: Physical, vol. 82, pp.291-223, May 2000.
    [39] B. Kobrin, J. Chinn, R. W. Ashurst, R. Maboudian, “Molecular vapor deposition (MVD) for improved SAM coatings”, SPIE Proceedings, vol. 5716, pp.151-157, Jan. 22, 2005, San Jose, CA.
    [40] M. Wanebo, B. Kobrin, F. Helmrich and J. Chinn, “Molecular vapor deposition (MVD™) - a new method of applying moisture barriers for packaging applications”, Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, pp.136-138, 16-18 March 2005, IEEE, Piscataway, NJ.
    [41] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul and G. M. Whitesides, “Improved Pattern Transfer in Soft Lithography Using Composite Stamps”, Langmuir, vol. 18, no. 13, pp.5314-5320, June 2002.
    [42] H. Kang, J. Lee, J. Park and H. H. Lee, “An improved method of preparing composite poly(dimethylsiloxane) moulds”, Nanotechnology, vol. 17, no. 1, pp. 197-200, Jan. 2006.
    [43] J. H. Chang, F. S. Cheng, C. C. Chao, Y. C. Weng and S. Y. Yanga, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces”, Journal of Vacuum Science & Technology A, vol. 23, pp.1687-1690, 2005.
    [44] D. Zhuang, J.H. Edgar, “Wet etching of GaN, AlN, and SiC: a review”, Materials Science and Engineering: R: Reports, vol. 48, pp.1-46, 2005.
    [45] C. Youtsey, I. Adesida and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Applied Physics Letters, vol. 71, pp.2151-2153, 1997.
    [46] C. Youtsey, L. T. Romano and I. Adesida, “Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations”, Applied Physics Letters, vol. 73, no. 6, pp.797-799, 1998.
    [47] C. Youtsey, L. T. Romano, R. J. Molnar and I. Adesida, “Rapid evaluation of dislocation densities in n-type GaN films using photoenhanced wet etching” , Applied Physics Letters, vol. 74, no. 23, pp.3537-3539, 1999.
    [48] E. Namvar and M. Fattahi, “Interference effects on the photoluminescence spectrum of GaN/InxGa1−xN single quantum well structures”, Journal of Luminescence, vol. 128, pp.155-160, Jan. 2008.
    [49] R. T. Holm, S. W. McKnight, E. D. Palik, and W. Lukosz, “Interference effects in luminescence studies of thin films”, Applied Optics, vol. 21, pp.2512-2519, 1982.
    [50] L. Cavigli, R. Gabrieli, M. Gurioli, F. Bogani, E. Feltin, J. F. Carlin, R. Butte, N. Grandjean, and A. Vinattieri, “Probing exciton density of states through phonon-assisted emission in GaN epilayers: A and B exciton contributions”, Physical Review B, vol. 82, pp.115208, 2010.
    [51] C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate”, Journal of Applied Physics, vol. 101, pp. 033113, 2007.
    [52] L. Siozade, S. Colard, M. Mihailovic, J. Leymarie, A. Vasson, N. Grandjean, M. Leroux, and J. Massies, “Temperature Dependence of Optical Properties of h-GaN Films Studied by Reflectivity and Ellipsometry”, Japanese Journal of Applied Physics, vol. 39, no. 1, pp.20-25, 2000.
    [53] L. Siozade, J. Leymarie, P. Disseix, A. Vasson, M. Mihailovic, N. Grandjean, M. Leroux, and J. Massies, “Modelling of thermally detected optical absorption and luminescence of (In,Ga)N/GaN heterostructures”, Solid State Communications, vol. 115, pp.575-579, Aug. 2000.
    [54] A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek Jr., “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures”, Applied Physics Letters, vol. 70, pp.2790-2792, 1997.
    [55] E. H. Park, J. Jang, S. Gupta, I. Ferguson, C. H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode”, Applied Physics Letters, vol. 93, pp.191103, 2008.
    [56] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode”, Japanese Journal of Applied Physics, vol. 41, no. 12B, pp.L1431-L1433, 2002.
    [57] C. I. H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstaedt, G. M. Peake, and L. Griego, “Low-dislocation-density GaN from a single growth on a textured substrate”, Applied Physics Letters, vol. 77, pp.3233-3235, 2000.
    [58] R. Pecharroma´n-Gallego, P.R. Edwards, R.W. Martin and I.M. Watson, “Investigations of phonon sidebands in InGaN/GaN multi-quantum well luminescence”, Materials Science and Engineering: B, vol. 93, pp.94-97, 2002.
    [59] S. W. Liu, J. X. Wang, Y. Divayana, K. Dev, S. T. Tan, H. V. Demir and X. W. 
Sun, “An efficient non-Lambertian organic light-emitting diode using imprinted submicronsize zinc oxide pillar arrays”, Applied Physics Letters, vol. 102, no. 5, pp.053305, 2013.
    [60] J. Liang, S.-K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, “Nanoheteroepitaxy of GaN on a nanopore array Si surface”, Applied Physics Letters, vol. 83, no. 9, pp.1752-1754, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE