簡易檢索 / 詳目顯示

研究生: 尼堤
Upadhyay, Nitinkumar Satyadev
論文名稱: 銠金屬催化碳-氫鍵活化氧化反應於合成含氮雜環化合物與相關具生物活性分子的應用
Rhodium (III)–Catalyzed Aerobic Oxidative C‒H Activation towards N-Heterocycles and relevant Bioactive Molecules
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 劉瑞雄
Liu, Rai-Shung
韓建中
Han, Chien-Chung
莊 士卿
Chuang, Shih-Ching
謝仁傑
Hsieh, Jen-Chieh
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 247
中文關鍵詞: 銠金屬催化反應需氧氧化反應水相反應碳-氫鍵活化環化反應烯化反應
外文關鍵詞: Rhodium-catalyzed reaction, Aerobic Oxidation, Aqueous medium, C-H activation, Annulation reaction, Olefination
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,過渡金屬催化碳-氫鍵活化反應逐漸受到重視,因此類型反應具有高位向選擇性、不須使用官能基化之反應物、高原子經濟性且可應用於合成具生物活性之有機分子,使碳-氫鍵活化反應成為熱門的研究領域之一。於此論文中主要探討銠金屬催化於有氧環境中的分子間與分子內碳-氫鍵官能基化反應,以下分成三個章節以詳細敘述之:

    第一章探討銠金屬催化2-芳基吡啶與烯化合物於氧氣下,使用純水作為溶劑,合成異吲哚啉鹽化合物。此反應中銠金屬會進行鄰位碳-氫鍵活化烯化反應,並經由氮雜-麥可加成反應、烯上β-碳去氫化與二次麥可加成,生成產物異吲哚啉鹽衍生物。

    第二章敘述銠金屬催化苯甲醛與炔胺化合物進行碳-氫鍵活化與環化反應,合成異吲哚啉鹽、喹嗪鹽與吡啶并氮雜卓鹽衍生物。此合成方法成功應用於合成天然物Ficuseptine。

    最後一章則講述銠金屬催化N-烷基苯甲醯胺與炔化合物於水相中與氧氣下合成高選擇性之異喹啉酮化合物。此反應可應用於較環保的合成具生物活性之含異喹啉酮骨架衍生物


    In recent year transition-metal-catalyzed C‒H activation reaction got considerable attention because of catalytic reaction does not require pre-functionalization also desired product is highly regioselective and utility of reaction can be applicable to synthesis biologically important compounds in one pot operation with high atom-efficacy. In this thesis, aerobic rhodium–catalyzed inter and intra molecular C‒H Bond functionalization reactions are described. For better understanding, I divided this thesis into three chapters. The first chapter describe about rhodium-catalyzed ortho olefination via intramolecular aza-michael addition in water and oxygen as a sole oxidant. In chapter second rhodium catalyzed intramolecular C‒H activation/annulation of aldehydes with alkyne-amines demonstrated in presence of oxygen as an oxidant. The third chapter describe about synthesis of isoquinolones from N-alkyl benzamides and alkynes using Rh(III) catalyst and inexpensive oxygen as the sole oxidant in aqueous medium.

    Chapter 1 describes a new method for the synthesis of Isoindolium Salts from from 2-arylpyridines and alkenes in aqueous medium under oxygen via Rh(III) catalysis. A reaction mechanism involving an ortho CH olefination of 2-arylpyridine by alkene, intramolecular aza-michael addition, deprotonation at the -carbon of the alkene fragment followed by another michael addition to give the final product is proposed.

    Chapter 2 deals with the synthesis of indolizidinium, quinolizinium and pyrido[1,2-a]azepinium salts synthesized from benzaldehydes (or ,-unsaturated aldehydes) and alkyne-amines catalyzed by rhodium complex via C–H activation is demonstrated. The present method is successfully applied to the synthesis of natural product, ficuseptine.

    Chapter 3 illustrates a new approach for highly regioselective synthesis of isoquinolones from N-alkyl benzamides and alkynes using Rh(III) catalyst and inexpensive oxygen as the sole oxidant in aqueous medium, in addition the methodology can be applied to the preparation of biologically active compounds having the isoquinolone core.

    TABLE OF CONTENTS Page ABSTRACT V LIST OF SCHEMES IX LIST OF TABLES XIII LIST OF FIGURES XIV ABBREVIATIONS XV LIST OF PUBLICATIONS XVIII CHAPTER 1: Rh-Catalyzed Regioselective Synthesis of Isoindolium Salts from 2-Arylpyridines and Alkenes in Aqueous Medium under Oxygen 1 1.1 Introduction 3 1.2 Results and Discussion 9 1.2.1 Optimization Studies 9 1.2.2 Scope of the Reaction 11 1.3 Mechanistic Studies 16 1.4 Proposed Catalytic cycle 20 1.5 Conclusion 21 1.6 Experimental Section 22 1.7 Spectroscopic Data 28 1.8 References 46 CHAPTER 2: Facile One-Pot Synthesis of 2,3-Dihydro-1H-indolizinium Derivatives by Rhodium(III)-Catalyzed Intramolecular Oxidative Annulation via C–H Activation: Application to Ficuseptine Synthesis 50 2.1 Introduction 52 2.2 Results and Discussion 62 2.2.1 Optimization Studies 62 2.2.2 Scope of the Reaction 64 2.3 Mechanistic Discussion 69 2.4 Inter- and intra-molecular Rh-catalyzed annulation reaction. 70 2.5 Application to the Synthesis of Ficuseptine 72 2.6 Conclusion 73 2.7 Experimental Section 74 2.8 Spectroscopic Data 77 2.9 References 93 CHAPTER 3: Synthesis of Isoquinolones via Rh-Catalyzed CH/NH Activation of Substituted Benzamides Using Air as the Sole Oxidant in Water. 97 3.1 Introduction 99 3.2 Results and Discussion 107 3.2.1 Optimization Studies 107 3.2.2 Scope of the Reaction 109 3.3 Intermolecular Competition Experiment 113 3.4 Mechanistic Studies 118 3.5 Proposed Catalytic Cycle 120 3.6 Application Towards Treatment of Cardiac Atrial Fibrillation 121 3.7 Gram-Scale Reaction 122 3.8 Evaluation of Green metrics of the process 122 3.9 Conclusion 125 3.10 Experimental Section 125 3.11 Spectroscopic Data 132 3.12 References 148 Crystal Structures, 1H and 13C NMR Spectra 152

    References:
    Chapter 1:

    1- Selected reviews: a) J. C. Lewis, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41, 1013; b) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; c) J. Le Bras, J. Muzart, Chem. Rev. 2011, 111, 1170; d) P. Gandeepan, C.-H. Cheng, Chem. Asian J. 2015, 10, 824; e) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 2015, 115, 12138; f) G. Song, X. Li, Acc. Chem. Res. 2015, 48, 1007.
    2- R. F. Heck, Acc. Chem. Res. 1979, 12, 146; b) I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009; c) The Mizoroki –Heck Reaction (Ed.: M. Oestreich), Wiley, Chichester, 2009; d) A. B. Dounay, L. E. Overman, Chem. Rev. 2003, 103, 2945; e) M. Shibasaki, E. M. Vogl, T. Ohshima, Adv. Synth. Catal. 2004, 346, 1533; f) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4516; Angew. Chem. Int. Ed. 2005, 44, 4442
    3- a) I. Moritani, Y. Fujiwara, Tetrahedron Lett 1967, 8, 1119; b) Y. Fujiwara, I. Moritani, S. Danno, R. Asano, S. Teranishi, J. Am. Chem. Soc. 1969, 91, 7166; c) Y. Fujiwara, O. Maruyama, M. Yoshidomi, H. Taniguchi, J. Org. Chem. 1981, 46, 851; d) C. Jia, W. Lu, T. Kitamura, Y. Fujiwara, Org. Lett. 1999, 1, 2097; e) C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001, 34, 633.
    4- Selected examples of Pd(II)-catalyzed C–H olefinations; a) D. Leow, G. Li, T.-S. Mei, J.-Q. Yu, Nature 2012, 486, 518; b) M. Miura, T. Tsuda, T. Satoh, S. Pivsa-Art, M. Nomura, J. Org. Chem. 1998, 63, 5211; c) S. H. Cho, S. J. Hwang, S. Chang, J. Am. Chem. Soc. 2008, 130, 9254; d) T. Yokota, M. Tani, S. Sakaguchi, Y. Ishii, J. Am. Chem. Soc. 2003, 125, 1476; e) P. Gandeepan, C.-H. Cheng, J. Am. Chem. Soc. 2012, 134, 5738; f) K.-J. Xiao, L. Chu, J.-Q. Yu, Angew. Chem. 2016, 128, 2906; Angew. Chem., Int. Ed. 2016, 55, 2856.
    5- Selected examples of Rh(III)-catalyzed C–H olefinations; a) T. Iitsuka, P. Schaal, K. Hirano, T. Satoh, C. Bolm, M. Miura, J. Org. Chem. 2013, 78, 7216; b) N. Umeda, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2009, 74, 7094; c) S. Rakshit, C. Grohmann, T. Besset, F. Glorius, J. Am. Chem. Soc. 2011, 133, 2350; d) S. Mochida, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2011, 76, 3024; e) S. H. Park, J. Y. Kim, S. Chang, Org. Lett. 2011, 13, 2372; f) C. Wang, H. Chen, Z. F. Wang, J. A. Chen, Y. Huang, Angew. Chem. 2012, 124, 7354; Angew. Chem., Int. Ed. 2012, 51, 7242; g) X. Wei, F. Wang, G. Song, Z. Du, X. Li, Org. Biomol. Chem. 2012, 10, 5521; h) N. Schrçder, T. Besset, F. Glorius, Adv. Synth. Catal. 2012, 354, 579; i) B. Liu, Y. Fan, Y. Gao, C. Sun, C. Xu, J. Zhu, J. Am. Chem. Soc. 2013, 135, 468; j) K. Muralirajan, R. Haridharan, S. Prakash, C.-H. Cheng, Adv. Synth. Catal. 2015, 357, 761; k) K. Parthasarathy, C. Bolm, Chem. Eur. J. 2014, 20, 4896; l) A. G. Algarra, D. L. Davies, Q. Khamker, S. A. Macgregor, C. L. McMullin, K. Singh, B. Villa-Marcos, Chem. Eur. J. 2015, 21, 3087; m) F. Wang, G. Song, X. Li, Org. Lett. 2010, 12, 5430.
    6- Selected examples of Ru(II)-catalyzed C–H olefinations; a). Y. Kommagalla, V. B. Mullapudi, F. Francis, C. V. Ramana, Catal. Sci. Technol. 2015, 5, 114; b) R. Manikandan, P. Madasamy, M. Jeganmohan, ACS. Catal. 2016, 6, 230; c) A. Bechtoldt, C. Tirler, K. Raghuvanshi, S. Warratz, C. Kornhaaß, L. Ackermann, Angew. Chem. 2016, 128, 272; Angew. Chem., Int. Ed. 2016, 55, 264; d) P. B. Arockiam, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Green Chem. 2011, 13, 3075; e) Y. Hashimoto, T. Ortloff, K. Hirano, T. Satoh, C. Bolm, M. Miura, Chem. Lett. 2012, 41, 151.
    7- Selected reviews see: a) B. Li, P. H. Dixneuf, Chem. Soc. Rev. 2013, 42, 5744; b) C. Fischmeister, H. Doucet, Green Chem. 2011, 13, 741; c) C. I. Herrerias, X. Yao, C.-J. Li, Chem. Rev. 2007, 107, 2546; d) R. N. Butler, A. G. Coyne, Chem. Rev. 2010, 110, 6302.
    8- Isoindolium salts synthesis see; a) J. A. Soroka, I. W. Bogdańska, A. R. Koṥmider, K. B. Soroka, J. Photochem. Photobiol. A: Chem. 1993, 73, 35; b) Y.-T. Park, N. W. Song, Y.-H. Kim, C.-G. Hwang, S. K. Kim, D. Kim, J. Am. Chem. Soc. 1996, 118, 11399; c) H. Herz, J. Schatz, G. Maas, J. Org. Chem., 2001, 66, 3176; d) A. Fozard, C. K. Bradsher, J. Org. Chem. 1967, 32, 2966.
    9- Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M., Angew. Chem. Int. Ed. 2013, 52, 2207.
    10- Khatun, N.; Banerjee, A.; Santra, S. K.; Behera, A.; Patel, B. K., RSC Advances 2014, 4, 54532.
    11- Prakash, S.; Muralirajan, K.; Cheng, C.-H., Chem. Commun. 2015, 51, 13362.
    12- K. J. Stowers, K. C. Fortner, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 6541.
    13- L. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2008, 130, 12414.
    14- R. P. Korivi, C.-H. Cheng, Org. Lett. 2005, 7, 5179; b) R. P. Korivi, W.-J. Wu, C.-H. Cheng, Chem. Eur. J. 2009, 15, 10727.
    15- Salt synthesis see a) J. Jayakumar, K. Parthasarathy, C.-H. Cheng, Angew. Chem. 2012, 124, 201; Angew. Chem., Int. Ed. 2012, 51, 197; b) K. Muralirajan, C.-H. Cheng, Chem. Eur. J. 2013, 19, 6198; c) C.-Z. Luo, P. Gandeepan, J. Jayakumar, K. Parthasarathy, Y.-W. Chang, C.-H. Cheng, Chem. Eur. J. 2013, 19, 14181; d) G. Zhang, L. Yang, Y. Wang, Y. Xie, H. Huang, J. Am. Chem. Soc. 2013, 135, 8850; e) C.-Z. Luo, J. Jayakumar, P. Gandeepan, Y.-C. Wu, C.-H. Cheng, Org. Lett. 2015, 17, 924; f) J. Jayakumar, C.-H. Cheng, Chem. Eur. J. 2016, 22, 1800; g) D. B. Zhao, Q. Wu, X. L. Huang, F. J. Song, T. Y. Lv, J. S. You, Chem. Eur. J. 2013, 19, 6239.
    16- Q. Wang, Y. Li, Z. Qi, F. Xie, Y. Lan, X. Li, ACS Catal. 2016, 6, 1971.
    17- a) W.-Y.Wong, Coord Chem. Rev. 2005, 249,971; b) Y.-C.Wu, C.-Y.Duh, J. Nat. Prod. 1990, 53, 1327.
    18- CCDC 1435152 (3ab), contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
    19- E. M. Simmons, J. F. Hartwig, Angew. Chem. 2012, 124, 3120-3126; Angew. Chem., Int. Ed. 2012, 51, 3066.

    Chapter 2:

    1- Selected reviews on indolizidine, quinolizidine and pyrido[1,2-a]azepinium alkaloids: (a) J. P. Michael, Nat. Prod. Rep., 2007, 24, 191; (b) J. P. Michael, Nat. Prod. Rep., 2008, 25, 139; (c) L.-Y. Wei, A. Brossi, S. L. Morris-Natschke, K. F. Bastow and K.-H. Lee, Studies Nat. Prod. Chem., 2008, 34, 3; (d) L. M. Harwood, R. J. Vickers, A. Padwa and W. Pearson, ed.; Wiley & Sons, New York, 2002; (e) W. Y. Yoshida and P. J. Scheuer, Heterocycles, 1998, 47, 1023; (f) J. P. Michael, Alkaloids Chem Biol., 2016, 75, 1.
    2- (a) P. Safár, J. Zúziová, S. Marchalín, N. Prónayová, L. Svorc, V. Vrábel, S. Sesták, D. Rendic, V. Tognetti, L. Joubert and A. Daich, Eur. J. Org. Chem., 2012, 549, 5498; (b) A. G. Damu, P. C. Kuo, L. S. Shi, C. Y. Li, C. S. Kuoh, P. L. Wu and T. S. Wu, J. Nat. Prod., 2005, 68, 1071; (c) K. M. Haney, F. Zhang, C. K. Arnatt, Y. Yuan, G. Li, J. L. Ware, D. A. Gewirtz and Y. Zhang, Bioorg. Med. Chem. Lett., 2011, 21, 5159; (d) J. A. Murphy and M. S. Sherburn, Tetrahedron, 1991, 47, 4077; (e) J. C. Daab and F. Bracher, Monatsh. Chem., 2003, 134, 573.
    3- F. Bracher and J. Daab, Eur. J. Org. Chem., 2002, 14, 2288.
    4- B. B. Snider and B. J. Neubert, Org. Lett., 2005, 7, 2715.
    5- Selected reviews on transition metals see (a) P. Gandeepan and C.-H. Cheng, Chem. Asian J., 2015, 10, 824; (b) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi and A. Lei, Chem. Rev., 2015, 115, 12138; (c) G. Song and X. Li, Acc. Chem. Res., 2015, 48, 1007; (d) T. Gensch, M. N. Hopkinson, F. Glorius and J. Wencel-Delord, Chem. Soc. Rev., 2016, 45, 2900; (e) W. Liu and L. Ackermann, ACS Catal., 2016, 6, 3743; (f) S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem. Soc. Rev., 2011, 40, 5068; (g) X. Huang, Y. Wang, J. Lan and J. You, Angew. Chem. Int. Ed., 2015, 54, 9404; h) M. Gulias and J. L. Mascarenas, Angew. Chem. Int. Ed., 2016, 55, 11000. Quaternary ammonium salt synthesis review; (a) P. Gandeepan and C.-H. Cheng, Chem. Asian J., 2016, 11, 448; (b) D. Sucunza, A. M. Cuadro, J. Alvarez-Builla and J. J. Vaquero, J. Org. Chem., 2016, 81, 10126.
    6- Selected examples of Rh(III)-catalyzed C–H annulations; (a) W. Dong, L. Wang, K. Parthasarathy, F. F. Pan and C. Bolm, Angew. Chem. Int. Ed., 2013, 52, 11573; (b) J. Jayakumar, K. Parthasarathy, Y. H. Chen, T. H. Lee, S. C. Chuang and C.-H. Cheng, Angew. Chem. Int. Ed. 2014, 53, 9889; (c) K. Fukuzumi, Y. Unoh, Y. Nishii, T. Satoh, K. Hirano and M. Miura, J. Org. Chem., 2016, 81, 2474; (d) Y. Yang, M.-B. Zhou, X.-H. Ouyang, R. Pi, R.-J. Song and J.-H. Li, Angew. Chem. Int. Ed., 2015, 54, 6595; (e) N. Umeda, H. Tsurugi, T. Satoh and M. Miura, Angew. Chem. Int. Ed., 2008, 47, 4019; (f) N. Guimond and K. Fagnou, J. Am. Chem. Soc., 2009, 131, 12050; (g) S. Peng, S. Liu, S.Zhang, S. Cao and J. Sun, Org. Lett., 2015, 17, 5032; (h) W. Wang, J.-L. Niu, W.-B. Liu, T.-H. Shi, X.-Q. Hao and M.-P. Song, Tetrahedron, 2015, 71, 8200; (i) Q. Ge, Y. Hu, B. Li and B. Wang, Org. Lett., 2016, 18, 2483; (j) D. L. Davies, C. E. Ellul, S. A. Macgregor, C. L. McMullin and K. Singh, J. Am. Chem. Soc., 2015, 137, 9659; (k) B. Feng, D. Wan, L. Yan, V. D. Kadam, J. You and G. Gao, RSC Adv., 2016, 6, 66407.
    7- Quaternary ammonium salt synthesis review; (a) P. Gandeepan and C.-H. Cheng, Chem. Asian J., 2016, 11, 448; (b) D. Sucunza, A. M. Cuadro, J. Alvarez-Builla and J. J. Vaquero, J. Org. Chem., 2016, 81, 10126.
    8- Salt synthesis by Ru(II)-catalyzed C–H annulations; (a). C. Ma, C. Ai, Z. Li, B. Li, H. Song, S. Xu and B. Wang, Organometallics, 2014, 33, 5164; (b) K. Parthasarathy, N. Senthilkumar, J. Jayakumar and, C.-H. Cheng, Org. Lett., 2012, 14, 3478.
    9- Salt synthesis by Co(III)-catalyzed C–H annulations; (a). S. Prakash, K. Muralirajan and C.-H. Cheng, Angew. Chem. Int. Ed., 2016, 55, 1844; (b) S.-S. Zhang, X.-G. Liu, C.-Y. Jiang, J.-Q. Wu, Q. Li, Z.-S. Huang and H. Wang, Adv. Synth. Catal., 2016, 358, 2186.
    10- X. Xianxiu, Y. Liu and C.-M. Park, Angew. Chem. Int. Ed., 2012, 51, 9372.
    11- N. Quinones, A. Seoane, R. Garcia-Fandino, J. L. Mascarenas and M. Gulias, Chem. Sci., 2013, 4, 2874.
    12- R. P. Korivi, C.-H. Cheng, Org. Lett. 2005, 7, 5179.
    13- J. Jayakumar, K. Parthasarathy, C.-H. Cheng, Angew. Chem. 2012, 124, 201-204
    14- K. Muralirajan, C.-H. Cheng, Chem. Eur. J. 2013, 19, 6198.
    15- Metal-catalyzed salt synthesis see; (a) J. Jayakumar and C.-H. Cheng, Chem. Eur. J., 2016, 22, 1800; (b) P. Gandeepan and C.-H. Cheng, Chem. Asian J., 2016, 11, 448 and reference therein; (c) W.-C. Chen, P. Gandeepan, C.-H. Tsai, C.-Z. Luo, P. Rajamalli and C.-H. Cheng, RSC Adv., 2016, 6, 63390.
    16- C.-Z. Luo, P. Gandeepan, J. Jayakumar, K. Parthasarathy, Y.-W. Chang, C.-H. Cheng, Chem. Eur. J. 2013, 19, 14181.
    17- N. Senthilkumar, P. Gandeepan, J. Jayakumar, C.-H. Cheng, Chem. Commun. 2014, 50, 3106.
    18- C. -Z, Luo, P. Gandeepan, C.-H. Cheng, Chem. Commun. 2013, 49, 8528.
    19- Luo, C.-Z.; Gandeepan, P.; Wu, Y.-C.; Tsai, C.-H.; Cheng, C.-H., ACS Catalysis 2015, 5, 4837.
    20- Luo, C.-Z.; Jayakumar, J.; Gandeepan, P.; Wu, Y.-C.; Cheng, C.-H., Org. Lett. 2015, 17, 924.
    21- (a) P. Tao and Y. Jia, Chem. Commun., 2014, 50, 7367; (b) X. Zhang, Y. Li, H. Shi, L. Zhang, S. Zhang, X. Xu and Q. Liu, Chem. Commun., 2014, 50, 7306.
    22- T. Swamy, B. Maheshwar Rao, J. S. Yadav, V. Ravinder, B. Sridhar and B. V. Subba Reddy, RSC Adv. 2015, 5, 68510.
    23- L. Zheng, Y. Bin, Y. Wang and R. Hua, J. Org. Chem., 2016, 81, 8911.
    24- Y. Li and T. J. Marks, J. Am. Chem. Soc., 1996, 118, 9295.
    25- CCDC 1495726 (3aa), contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
    26- H. M. L. Davies and X. Dai, J. Org. Chem. 2005, 70, 6680.

    Chapter 3:

    1- Selected reviews: a) G. Song, F. Wang and X. Li, Chem. Soc. Rev., 2012, 41, 3651; b) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147; c) P. Gandeepan and C.-H. Cheng, Chem. – Asian J, 2015, 10, 824; d) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev., 2010, 110, 624; e) J. Wencel-Delord, T. Droge, F. Liu and F. Glorius, Chem. Soc. Rev., 2011, 40, 4740; f) C.-J. Li, Chem. Rev., 2005, 105, 3095. g) J. R. Lewis, Nat. Prod. Rep., 1994, 11, 329; h) B. D. Krane, M. O. Fagbule, M. Shamma and B. Gözler, J. Nat. Prod., 1984, 47, 1; i) B. D. Krane and M. Shamma, J. Nat. Prod., 1982, 45, 377; j) K. W. Bentley, Nat. Prod. Rep., 1992, 9, 365; k) W.-Y. Wong, Coord. Chem. Rev., 2005, 249, 971; (l) Y.-C. Wu and C.-Y. Duh, J. Nat. Prod., 1990, 53, 1327.
    2- Selected reviews see (a) R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer and O. Baudoin, Chem. Eur. J., 2010, 16, 2654; b) M. C. Willis, Chem. Rev., 2010, 110, 725. c) G.-F. Zha, H.-L. Qin, E. Kantchev and A. B. Assen, RSC Adv., 2016, 6, 30875.
    3- Selected reviews on first-row transition metals; (a) A. A. Kulkarni and O. Daugulis, Synthesis, 2009, 4087; (b) N. Yoshikai, Synlett, 2011, 1047.
    4- (a) B. Li and P. H. Dixneuf, Chem. Soc. Rev., 2013, 42, 5744; (b) C. Fischmeister and H. Doucet, Green Chem., 2011, 13, 741; (c) J. Zhang, H. Qian, Z. Liu, C. Xiong, Y. Zhang, Eur. J. Org. Chem. 2014, 36, 8110; (d) G. Zhang, H. Yu, G. Qin, H. Huang, Chem. Commun., 2014, 50, 4331; (e) Y.H. Xu, T. He, Q.C. Zhang, T.P. Loh, Chem. Commun., 2014, 50, 2784. (f) N.S.Upadhyay, J. Jayakumar, C.-H Cheng, Adv. Synth.Catal. 2016, 358, 3381. (g) N. S.Upadhyay, J. Jayakumar, C.-H Cheng, Chem.Commun. 2017, 53, 2491. (h) H. Gong, H. Zeng, F. Zhou and C.-J. Li Angew. Chem. Int. Ed., 2015, 54, 5718.
    5- H. Gao, J. Zhang, Adv. Synth. Catal. 2009, 351, 85.
    6- V. R. Batchu, D. K. Barange, D. Kumar, B. R. Sreekanth, K. Vyas, E. A. Reddy, M. Pal, Chem. Commun. 2007, 19, 1966.
    7- C.-C. Liu, K. Parthasarathy , C.-H. Cheng, Org. Lett. 2010, 12, 3518.
    8- F. Wang,H. Liu, H. Fu, Y. Jiang, Y. Zhao, Org. Lett. 2009, 11, 2469.
    9- Y. Kajita, S. Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058.
    10- T. Miura, M. Yamauchi, M. Murakami, Org. Lett. 2008, 10, 3085.
    11- a) N. Guimond, C. Gouliaras and K. Fagnou, J. Am. Chem. Soc., 2010, 132, 6908; b) N. Guimond, S. I. Gorelsky and K. Fagnou, J. Am. Chem. Soc., 2011, 133, 6449.
    12- T. K. Hyster and T. Rovis, J. Am. Chem. Soc., 2010, 132, 10565.
    13- L. Ackermann, A. V. Lygin, N. Hofmann, Angew. Chem. 2011, 123, 6503; Angew. Chem. Int. Ed. 2011, 50, 6379.
    14- H. Zhong, D. Yang, S. Wang, J. Huang, Chem. Commun. 2012, 48, 3236.
    15- H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto, N. Chatani, J. Am. Chem. Soc. 2011, 133, 14952.
    16- J. R. Huckins, E. A. Bercot, O. R. Thiel, T.-Li. Hwang, M. M. Bio, J. Am. Chem. Soc. 2013, 135, 14492.
    17- S. Manna, A. P. Antonchick, Angew. Chem. Int. Ed. 2014.
    18- a) T. Satoh and M. Miura, Chem. Eur. J., 2010, 16, 11212; b) S. Mochida, N. Umeda, K. Hirano, T. Satoh and M. Miura, chem. Lett. 2010, 39, 744.
    19- G. Song, D. Chen, C.-L. Pan, R. H. Crabtree, X. Li, J. Org. Chem. 2010, 75, 7487.
    20- (a) K. Muralirajan, R. Haridharan, S. Prakash and C.-H. Cheng, Adv. Synth. Catal. 2015, 357, 761; (b) K. Parthasarathy and C. Bolm, Chem. Eur. J., 2014, 20, 4896.
    21- a) C.-C. Liu, K. Parthasarathy and C.-H. Cheng, Org. Lett., 2010, 12, 3518; b) S. Maity, S. Agasti, A. M. Earsad, A. Hazra and D. Maiti, Chem. Eur. J., 2015, 21, 11320; c) M. Moselage, J. Li and L. Ackermann, ACS Catal., 2016, 6, 498; d) G. Sivakumar, A. Vijeta and M. Jeganmohan, Chem. Eur. J., 2016, 22, 5899.
    22- Salt synthesis see (a) J. Jayakumar, K. Parthasarathy and C.-H. Cheng, Angew. Chem., Int. Ed., 2012, 51, 197; (b) K. Muralirajan and C.-H. Cheng, Chem. Eur. J., 2013, 19, 6198; (c) C.-Z. Luo, P. Gandeepan, J. Jayakumar, K. Parthasarathy, Y.-W. Chang and C.-H. Cheng, Chem. Eur. J., 2013, 19, 14181; (d) G. Zhang, L. Yang, Y. Wang, Y. Xie and H. Huang, J. Am. Chem. Soc., 2013, 135, 8850; (e) C.-Z. Luo, J. Jayakumar, P. Gandeepan, Y.-C. Wu and C.-H. Cheng, Org. Lett., 2015, 17, 924; f) R. P. Korivi, Y.-C. Wu and C.-H. Cheng, Chem. Eur. J., 2009, 15, 10727.
    23- Selected examples of Ru(II)-catalyzed C–H activation: a) P. B. Arockiam, C. Fischmeister, C. Bruneau and P. H. Dixneuf, Green Chem., 2011, 13, 3075. b) R. Manikandan, P. Madasamy and M. Jeganmohan, Chem. Eur. J., 2015, 21, 13934; c) K. Parthasarathy, N. Senthilkumar, J. Jayakumar and C.-H. Cheng, Org. Lett., 2012, 14, 3478; d) L. Ackermann and S. Fenner, Org. Lett., 2011, 13, 6548; e) B. Li, H. Feng, S. Xu and B. Wang, Chem. Eur. J., 2011, 17, 12573; f) R. Manoharan and M. Jeganmohan, Chem. Commun., 2015, 51, 2929.
    24- a) D. A. Claremon, M. Glen, C. J. Mclntyre and N. J. Liverton, US Pat. WO20056870055 (B2), 2005. b) C. P. Regan, L. Kiss, G. L. Stump, C. J. McIntyre, D. C. Beshore, N. J. Liverton, C. J. Dinsmore and J. J. Lynch, J. Pharmacol. Exp. Ther., 2007, 324, 322.
    25- a) Y. Banno, Y. Miyamoto, M. Sasaki, S. Oi, T. Asakawa, O. Kataoka, K. Takeuchi, N. Suzuki, K. Ikedo, T. Kosaka, S. Tsubotani, A. Tani, M. Funami, M. Tawada, Y. Yamamoto, K. Aertgeerts, J. Yano and H. Maezaki, Bioorg. Med. Chem., 2011, 19, 4953; b) T. Ukita, Y. Nakamura, A. Kubo, Y. Yamamoto, Y. Moritani, K. Saruta, T. Higashijima, J. Kotera, M. Takagi, K. Kikkawa and K. Omori, J. Med. Chem., 2001, 44, 2204.
    26- CCDC 1495727 (compound 3aa), 1527117 (3ak) and 1495728 (3fl) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
    27- E. M. Simmons and J. F. Hartwig, Angew. Chem. Int. Ed., 2012, 51, 3066.
    28- P. S. Lin, M. Jeganmohan and C.-H. Cheng, Chem. Eur. J., 2008, 14, 11296.
    29- (a) R. Turgis, I. Billault, S. Acherar, J. Augé and M.-C. Scherrmann, Green Chem., 2013, 15, 1016; (b) A. Ragupathi, V. P. Charpe, A. Sagadevan, K. C. Hwang, Adv. Synth. Catal. 2017, 359, 1138.

    QR CODE