簡易檢索 / 詳目顯示

研究生: 黃鑫泓
Hsin-Hung Huang
論文名稱: 氧化鋅稀磁性半導體及其與氧化鎳反鐵磁之交互耦合研究
ZnO-based Diluted Magnetic Semiconductor and Exchange Bias of ZnCoO/NiO
指導教授: 賴志煌
Chih-Huang Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 105
中文關鍵詞: 稀磁性半導體氧化鋅氧化鎳交互耦合
外文關鍵詞: DMS, ZnO, NiO, exchange coupling
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用雙離子槍濺鍍系統,以室溫製程的優勢製備出鈷摻雜的氧化鋅稀磁性半導體薄膜,並且研究其在結構性質以及磁性質上的表現。藉由XPS以及TEM的分析方法成功地排除系統中鈷原子團的存在,並且利用SQUID的量測驗證樣品為具有室溫鐵磁性的稀磁性半導體薄膜。此外,藉由氧化鎳反鐵磁的引入,探討其與氧化鋅稀磁性半導體之間的交互耦合現象。利用場冷卻的方式,我們成功地在低溫下觀察到氧化鋅稀磁性半導體與氧化鎳反鐵磁之間的交互耦合現象,其中包括了磁滯曲線同時具有的橫向以及縱向偏移現象,且其磁滯曲線偏移的方向和樣品經過場冷卻時所施加的磁場方向有極大的關聯性。藉由場冷卻效應以及溫度效應的實驗,我們可以合理地推斷,當樣品經過場冷卻後,存在於樣品中的低溫冷凝磁矩會同時貢獻到磁滯曲線的橫向以及縱向偏移,同時樣品中也存在著一般鐵磁/反鐵磁的交換異向性貢獻,並且當樣品經過場冷卻後,此交換異向性將會使磁滯曲線產生橫向的偏移,也就是一般鐵磁/反鐵磁的交換場表現,此推測可以藉由將樣品做兩段式場冷卻的方式得到合理的驗證。


    This work has been focused on the study of structural and magnetic properties of ZnO-based diluted magnetic semiconductor (DMS) thin films. (0002) epitaxial ZnCo0.07O films were prepared by ion beam deposition (IBD) system at room temperature. The existence of Co clusters in ZnCoO was excluded successfully by XPS and TEM analysis. Room-temperature ferromagnetism of ZnCoO was clearly observed from the results of SQUID measurements. Furthermore, with the introduction of NiO antiferromagnetic layer, we observed the hysteresis loop shifts in both horizontal and vertical directions after ZnCoO/NiO samples were field-cooled to low temperature. The directions of hysteresis loop shifts were strongly related to the cooling-field directions. Combine the experimental results of field-cooling strength effect and temperature effect, we can conclude that the hysteresis loop shifts in both horizontal and vertical directions of ZnCoO/NiO samples after the field-cooling process were induced by the so-called low temperature frozen spins in ZnCoO/NiO system. Meanwhile, from the two-step cooling process for ZnCoO/NiO samples, we can conclude that the FM/AFM exchange anisotropy in ZnCoO/NiO system was also set by the field-cooling process, which can only contribute to the hysteresis loop shift in horizontal direction.

    第一章 序論 第二章 文獻回顧 2-1 稀磁性半導體簡介 2-1-1 何謂稀磁性半導體 2-1-2 稀磁性半導體的分類 2-1-3 居禮溫度的理論預測 2-1-4 稀磁性半導體的磁性來源 2-1-5 自旋電子學與稀磁性半導體 2-1-6 稀磁性半導體的挑戰 2-1-7 氧化鋅的性質 2-1-8 氧化鋅稀磁性半導體的優勢 2-2 氧化鋅稀磁性半導體文獻回顧 2-3 稀磁性半導體的應用 2-3-1 穿隧式磁阻元件 2-3-2 鐵磁/反鐵磁交互耦合系統 第三章 實驗設備與分析儀器 3-1 實驗流程 3-2 雙離子槍濺鍍系統 3-3 X光繞射儀 3-4 原子力探針顯微鏡 3-5 樣品振盪磁測計 3-6 超導量子干涉儀 3-7 掃描式光電子能譜顯微儀 3-8 穿透式電子顯微鏡 第四章 實驗結果與討論 4-1 氧化鋅稀磁性半導體薄膜製備 4-1-1 磊晶結構氧化鋅稀磁性半導體薄膜 4-1-2 鈷原子團的排除 4-1-3 室溫鐵磁性質 4-2 稀磁性半導體與反鐵磁之交互耦合 4-2-1 氧化鎳反鐵磁層的引入 4-2-2 低溫交互耦合現象 4-2-3 場冷強度以及溫度效應 4-2-4 7 Tesla量測場效應 4-2-5 磁滯曲線偏移的機制來源 第五章 結論 第六章 參考文獻

    [1] H. Ohno, “Making Nonmagnetic Semiconductors Ferromagnetic”, Science 281, 951 (1998)
    [2] H. Munekata, H. Ohno, S. von Molnar, Armin Segmiiller, L. L. Chang and L. Esaki, “Diluted Magnetic III-V Semiconductors”, Phys. Rev. Lett. 63, 1849 (1989)
    [3] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Y. Koshihara and H. Koinuma, “Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide”, Science 291, 854 (2001)
    [4] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors”, Science 287, 1019 (2000)
    [5] K. Sato and H. Katayama-Yoshida, “Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors”, Jpn. J. Appl. Phys., Part 2 39, L555 (2000)
    [6] K. Sato and H. Katayama-Yoshida, “First principles materials design for semiconductor spintronics”, Semicond. Sci. Technol. 17, 367 (2002)
    [7] K. Sato and H. Katayama-Yoshida, “Ab initio Study on the Magnetism in ZnO-, ZnS-, ZnSe and ZnTe-Based Diluted Magnetic Semiconductors”, Phys. Stat. Sol. 229, 673 (2002)
    [8] H. Katayama-Yoshida and K. Sato, “Materials design for semiconductor spintronics by ab initio electronic-structure calculation”, Physica B 327, 337 (2003)
    [9] S. Datta and B. Das, “Electronic analog of the electro-optic modulator”, Appl. Phys. Lett., 56, 665 (1990)
    [10] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Petroff, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Phys. Rev.Lett. 61, 2472 (1988)
    [11] M. Julliere, “Tunneling between ferromagnetic films”, Phys. Lett. A 54, 225 (1975)
    [12] Ahsan M. Nazmul, S. Sugahara and M. Tanaka, “Ferromagnetism and high Curie temperature in semiconductor heterostructures with Mn δ-doped GaAs and p-type selective doping”, Phys. Rev. B 67, 241308 (2003)
    [13] D. Chiba, K. Takamura, F. Matsukura and H. Ohno, “Effect of low-temperature annealing on (Ga,Mn)As trilayer structures”, Appl. Phys. Lett. 82, 3020 (2003)
    [14] K. W. Edmonds, P. Bogusławski, K. Y. Wang, R. P. Campion, S. N. Novikov, N. R. S. Farley, B. L. Gallagher, C. T. Foxon, M. Sawicki, T. Dietl, M. Buongiorno Nardelli and J. Bernholc, “Mn Interstitial Diffusion in (Ga,Mn)As”,Phys. Rev. Lett. 92, 037201 (2004)
    [15] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, J. C. Roberts and S. M. Bedair, “Room temperature ferromagnetic properties of (Ga,Mn)N”,Appl. Phys. Lett. 79, 3473 (2001)
    [16] H. Saito, V. Zayets, S. Yamagata and K. Ando, “Room-Temperature Ferromagnetism in a II-VI Diluted Magnetic Semiconductor Zn1-xCrxTe”, Phys. Rev. Lett. 90, 207202 (2003)
    [17] H. Saeki, H. Tabata and T. Kawai, “Magnetic and electric properties of vanadium doped ZnO films”, Solid State Commun. 120, 439 (2001)
    [18] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillen, B. Johansson and G. A. Gehring, “Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO”, Nat. Mater. 2, 673 (2003)
    [19] K. Ueda, H. Tabata and T Kawai, “Magnetic and electric properties of transition-metal-doped ZnO films”, Appl. Phys. Lett. 79, 988 (2001)
    [20] J. J. Wu, S. C. Liu and M. H. Yang, “Room-temperature ferromagnetism in well-aligned Zn1−xCoxO nanorods”, Appl. Phys. Lett. 85, 1027 (2004)
    [21] W. K. Park, R. J. Ortega-Hertogs, J. S. Moodera, A. Punnoose and M. S. Seehra “Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films above room temperature”, J. Appl. Phys. 91, 8093 (2002)
    [22] Z. Wang, J. Tang, L. D. Tung, W. Zhou and L. Spinu, “Ferromagnetism and transport properties of Fe-doped reduced-rutile TiO2-δ thin films”, J. Appl. Phys. 93, 7870 (2003)
    [23] N. H. Hong, J. Sakai and A. Hassini, “Ferromagnetism at room temperature with a large magnetic moment in anatase V-doped TiO2 thin films”, Appl. Phys. Lett. 84, 2602 (2004)
    [24] S.J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner and J. D. Budai, “Advances in wide bandgap materials for semiconductor spintronics”, Material Science and Engineering R, 40, 137 (2003)
    [25] C. Liu, F. Yun and H. Morkoc, “Ferromagnetism of ZnO and GaN: A Review”, Journal of Materials Science: Materials in Electronics 16, 555 (2005)
    [26] J. C. A. Huang and H. S. Hsu, “Inspection of magnetic semiconductor and clustering structure in CoFe-doped ZnO films by bias-dependent impedance spectroscopy”. Appl. Phys. Lett. 87, 132503 (2005)
    [27] S. H. Jeong, B. S. Kim and B. T. Lee, “Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient”, Appl. Phys. Lett. 82, 2625 (2003)
    [28] S. J. Han, J. W. Song, C. H. Yang, S. H. Park, J. H. Park, Y. H. Jeong and K. W. Rhie, “A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu”, Appl. Phys. Lett. 81, 4212 (2002)
    [29] H. T. Lin, T. S. Chin, J. C. Shih, S. H. Lin, T. M. Hong, R. T. Huang, F. R. Chen and J. J. Kai, “Enhancement of ferromagnetic properties in Zn1−xCoxO by additional Cu doping”, Appl. Phys. Lett. 85, 621 (2004)
    [30] D. P. Norton, M. E. Overberg, S. J. Pearton, K. Pruessner, J. D. Budai, L. A. Boatner, M. F. Chisholm, J. S. Lee, Z. G. Khim, Y. D. Park and R. G. Wilson, “Ferromagnetism in cobalt-implanted ZnO”, Appl. Phys. Lett. 83, 5488 (2003)
    [31] D. P. Norton, S. J. Pearton, A. F. Hebard, N. Theodoropoulou, L. A. Boatner and R. G. Wilson, “Ferromagnetism in Mn-implanted ZnO:Sn single crystals”, Appl. Phys. Lett. 82, 239 (2003)
    [32] A. Che Mofor, A. El-Shaer, A. Bakin, A. Waag, H. Ahlers, U. Siegner, S. Sievers, M. Albrecht, W. Schoch, N. Izyumskaya, V. Avrutin, S. Sorokin, S. Ivanov and J. Stoimenos, “Magnetic property investigations on Mn-doped ZnO Layers on sapphire”, Appl. Phys. Lett. 87, 062501 (2005)
    [33] D. B. Buchholz, R. P. H. Chang, J. H. Song and J. B. Ketterson, “Room-temperature ferromagnetism in Cu-doped ZnO thin films”, Appl. Phys. Lett. 87, 082504 (2005)
    [34] C. Song, K. W. Geng, F. Zeng, X. B. Wang, Y. X. Shen, F. Pan, Y. N. Xie, T. Liu, H. T. Zhou and Z. Fan, “Giant magnetic moment in an anomalous ferromagnetic insulator: Co-doped ZnO”, Phys. Rev. B 73, 024405 (2006)
    [35] K. Potzger, S. Zhou, F. Eichhorn, M. Helm, W. Skorupa, A. Mücklich, J. Fassbender, T. Herrmannsdörfer and A. Bianchi, “Ferromagnetic Gd-implanted ZnO single crystals”, J. Appl. Phys. 99, 063906 (2006)
    [36] N. Akiba, D. Chiba, K. Nakata, F. Matsukura, Y. Ohno and H. Ohno, “Spin-dependent scattering in semiconducting ferromagnetic (Ga,Mn)As trilayer structures”, J. Appl. Phys. 87, 6436 (2000)
    [37] M. Tanaka and Y. Higo, “Large Tunneling Magnetoresistance in GaMnAs/AlAs/GaMnAs Ferromagnetic Semiconductor Tunnel Junctions”, Phys. Rev. Lett. 87, 026602 (2001)
    [38] D. Chiba, F. Matsukura and H. Ohno, “Tunnelingmag netoresistance in (Ga,Mn)As-based heterostructures with a GaAs barrier”, Physica E 21, 966 (2004)
    [39] H. Toyosaki, T. Fukumura, K. Ueno, M. Nakano and M. Kawasaki, “A Ferromagnetic Oxide Semiconductor as Spin Injection Electrode in Magnetic Tunnel Junction”, Jpn. J. Appl. Phys. 44, L896 (2005)
    [40] W. H. Meiklejohn and C. P. Bean, “New Magnetic Anisotropy”, Phys. Rev. 102, 1413 (1956)
    [41] J. Nogués and Ivan K. Schuller, “Exchange bias”, J. Magn. Magn. Mater. 192, 203 (1999)
    [42] K. F. Eid, M. B. Stone, K. C. Ku, O. Maksimov, P. Schiffer, N. Samarth, T. C. Shih and C. J. Palmstrøm, “Exchange biasing of the ferromagnetic semiconductor Ga1−xMnxAs”, Appl. Phys. Lett. 85, 1556 (2004)
    [43] H. X. Liu, Stephen Y. Wu, R. K. Singh and N. Newman, “Exchange biasing of ferromagnetic Cr-doped GaN using a MnO overlayer”, J. Appl. Phys. 98, 046106 (2005)
    [44] A. C. Tuan, J. D. Bryan, A. B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D. E. McCready, D. Gaspar, M. H. Engelhard, J. W. Rogers, Jr., K. Krishnan, D. R. Gamelin and S. A. Chambers, “Epitaxial growth and properties of cobalt-doped ZnO on α-Al2O3 single-crystal substrates”, Phys. Rev. B 70, 054424 (2004)
    [45] A. E. Berkowitz, M. F. Hansen, R. H. Kodama, Y. J. Tang. J. I. Hong and David J. Smith, “Establishing exchange bias below TN with polycrystalline Ni0.52Co0.48O/Co bilayers”, Phys. Rev. B 72, 134428 (2005)
    [46] Z. Wang, Y. Hong, J. Tang, C. Radu, Y. Chen, L. Spinu, W. Zhou and L. D. Tung, “Giant negative magnetoresistance of spin polarons in magnetic semiconductors–chromium-doped Ti2O3 thin films”, Appl. Phys. Lett. 86, 082509 (2005)
    [47] S. M. Zhou, D. Imhoff, K. Y. Zhang and Y. L. Wang, “Effect of field cooling on magnetic properties of ultrafine CoO/Co particles”, Appl. Phys. A 81, 115 (2005)
    [48] R. K. Zheng, G. H. Wen, K. K. Fung and X. X. Zhang, “Training effect of exchange bias in γ-Fe2O3 coated Fe nanoparticles”, Phys. Rev. B 69, 214431 (2004)
    [49] R. K. Zheng, G. H. Wen, K. K. Fung and X. X. Zhang, “Giant exchange bias and the vertical shifts of hysteresis loops inγ-Fe2O3-coated Fe nanoparticles”, J. Appl. Phys. 95, 5244 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE