簡易檢索 / 詳目顯示

研究生: 吳明竑
Wu, Ming-Hong
論文名稱: 合成具尺寸控制的磷酸鋰鐵立方體及菱形板並探討其光學與電化學性質
Synthesis of Size-Tunable LiFePO4 Nanocubes and Rhombic Plates for Optical and Electrochemical Characterization
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 陳銘洲
Chen, Ming-Chou
段興宇
Tuan, Hsing-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 65
中文關鍵詞: 鋰電池磷酸鋰鐵形貌控制晶面效應
外文關鍵詞: lithium ion battery, lithium iron phosphate, shape-controlled, facet-effect
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來全球暖化日益嚴重,環境保護的意識逐漸抬頭,鋰離子電池材料的研究蓬勃發展,其中LiFePO4由於製成成本低、無毒、高穩定性,使其被視為可以取代石化燃料的新生代能源,不過在眾多研究中,此材料多數為微米等級的粒子且形貌和晶面較無關聯。有鑑於此,本篇研究發展了新的合成策略,透過加入鹽酸去調控pH值,成功在短時間內合成出暴露{100}晶面的立方體及主要暴露{010}的菱形板。透過XRD、SEM、TEM、XPS對樣品的結晶性、形貌及表面純度去做分析。在XRD中立方體的(200)繞射峰訊號較強,而在菱形板則是(020),此為preferred orientation effect所造成,透過此可得知暴露的晶面。透過SEM去做粒徑分析,得立方體的尺寸落在340至570奈米,而菱形板則在620到1223奈米。於TEM中可以透過SAED得立方體顯露六個{100}晶面,而菱形板則顯露兩個{010}以及四個{100}晶面。於XPS中可以看出樣品相當純,且發現在Li 1s光譜,兩形狀峰值有偏移的現象,這顯示兩形狀的表面有些許差異。在光學上我們由DRS和Tauc plot觀察到,於不同尺寸的比較中,較小的立方體與菱形板粒子有較藍移的吸收峰值且經公式轉換於Tauc plot得較大的能帶值。而在不同形狀的比較中,可以發現相似體積下,菱形板相比於立方體有較大的能帶值,綜合以上兩點顯示了光學上的尺寸與晶面效應。在電化學性質上我們由CV和QV及discharge curves觀察到,於不同尺寸的比較中,較小的立方體與菱形板粒子有較佳的電容量表現。而在不同形狀的比較中,可以發現相似體積下,菱形板相比於立方體有較佳的電容量表現,綜合以上兩點顯示了電化學上的尺寸與晶面效應。


    With the rise of environmental awareness, traditional fossil fuels are gradually replaced by other energy sources and lithium-ion battery materials research are booming recently. Among them, LiFePO4 is regarded as a new energy source that can replace fossil fuels due to its low manufacturing cost, non-toxicity, and high stability. However, in many studies, most of this materials are micron-scale particles and the shape and crystal facet are relatively unexplored. In view of this, a new synthesis strategy is developed in this study. By adding HCl to adjust the pH value, cubes exposing {100} faces and rhombic plates with mainly {010} faces have been successfully synthesized in a short period of time. The crystallinity, morphology and surface purity of the samples were analyzed by XRD, SEM, TEM and XPS. In XRD, the (200) diffraction peak of cubes is stronger, and the (020) peak is stronger for rhombic plates from the preferred orientation effect. Cubes are between 340 and 570 nm, while rhombic plates are between 620 and 1223 nm. From TEM images and their corresponding SAED patterns, cubes expose six {100} faces and rhombic plates expose two {010} and four {100} faces. The Li 1s XPS data show slightly peak shift, which indicates that the surfaces of cubes and rhombic plates are different. From DRS and Tauc plots, the small cubes and rhombic plates have more blue-shifted absorption peaks and larger band gap values. Moreover, rhombic plates have a larger band gap than cubes with similar volumes. From CV, QV and discharge curves, small cubes and rhombic plates have better discharging capacity values. In addition, rhombic plates have a better discharging capacity value than cubes with similar volumes. Surface control of LiFePO4 crystals is considered beneficial to lithium ion battery performance.

    TABLE OF CONTENTS 論文摘要 I ABSTRACT II ACKNOWLEDGEMENT III TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF SCHEMES XI LIST OF TABLES XII Chapter 1. Introduction 1 1.1 Facet-dependent properties of the semiconductor crystals 1 1.2 Optical and electrical properties of Ag3PO4 crystals 1 1.3 Lithium-ion battery materials 4 1.4 Morphological evolution for lithium iron phosphate crystals 8 1.5 Synthesis strategies for shape-tunable LiFePO4 crystals 12 1.5.1 Tetra(ethylene glycol)-assisted synthetic procedures 12 1.5.2 Ammonium-assisted synthetic procedures 14 1.5.3 Base-assisted synthetic procedures 17 Chapter 2. LiFePO4 Cubes and Rhombic Plates for Optical and Electrochemical Characterization 20 2.1 Experimental section 21 2.1.1 Chemicals 21 2.1.2 Instrumentation 21 2.1.3 Composition and mechanism for Lithium ion cell 22 2.1.4 Synthesis of LiFePO4 crystals and structural characterization 24 2.1.4.1 Synthesis of LiFePO4 cubes 24 2.1.4.2 Synthesis of LiFePO4 rhombic plates 25 2.2 Results and Discussion 28 2.2.1 Crystal morphology by tuning base and acid 28 2.2.2 Mechanism of LiFePO4 crystals 32 2.2.3 SEM images and size distribution histograms 33 2.2.4 Crystallinity and purity of LiFePO4 samples 35 2.2.4.1 Powder X-ray diffraction (PXRD) patterns of LiFePO4 cubes 35 2.2.4.2 Powder X-ray diffraction (PXRD) patterns of LiFePO4 rhombic plates 37 2.2.4.3 Comparison PXRD differences between cubes and rhombic plates 38 2.2.5 TEM images and SAED patterns 39 2.2.6 Particle surface analysis by using XPS 40 2.2.7 Optical facet and size effects 42 2.2.7.1 UV-vis spectra and Tauc plots of LiFePO4 cubes 42 2.2.7.2 UV-vis spectra and Tauc plots of LiFePO4 rhombic plates 44 2.2.7.3 Facet and size effects in optical properties of LiFePO4 crystals 44 2.2.8 Facet and size effects in electrochemical performances 47 2.2.8.1 CV curves and diffusion coefficient calculations of LiFePO4 crystals 47 2.2.8.2 The cell performances of LiFePO4 cubes 49 2.2.8.3 The cell performances of LiFePO4 rhombic plates 51 2.2.8.4 Facet effects in the cell performances of LiFePO4 crystals 52 CONCLUSION 56 REFERENCES 57

    REFERENCES
    1 Chen, H.-S.; Wu, S.-C.; Huang, M. H. Direct Synthesis of Size-Tunable PbS Nanocubes and Octahedra and the pH Effect on Crystal Shape Control. Dalton Trans. 2015, 44 (34), 15088-15094.
    2 Chen, J. W.; Pal, A.; Chen, B. H.; Kumar, G.; Chatterjee, S.; Peringeth, K.; Lin, Z. H.; Huang, M. H. Shape‐Tunable BaTiO3 Crystals Presenting Facet‐Dependent Optical and Piezoelectric Properties. Small 2023, 19 (9), 2205920.
    3 Hsia, C. F.; Chang, C. H.; Huang, M. H. Unusually Large Lattice Mismatch‐Induced Optical Behaviors of Au@ Cu–Cu2O Core–Shell Nanocrystals with Noncentrally Located Cores. Part Part Syst Charact 2018, 35 (7), 1800112.
    4 Ke, W. H.; Hsia, C. F.; Chen, Y. J.; Huang, M. H. Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet‐Dependent Optical Property Examination. Small 2016, 12 (26), 3530-3534.
    5 Kumar, G.; Chen, C.-R.; Chen, B.-H.; Chen, J.-W.; Huang, M. H. Morphological Evolution of Cadmium Oxide Crystals Showing Color Changes and Facet-Dependent Conductivity Behavior. J. Mater. Chem. C 2022, 10 (33), 12125-12131.
    6 Kumar, G.; Chen, Z.-L.; Jena, S.; Huang, M. H. Facet-Dependent Optical and Electrical Properties of SrTiO3 Wafers. J. Mater. Chem. C 2023, 11 (11), 3885-3888.
    7 Yang, Y.-C.; Peng, Y.-W.; Lee, A.-T.; Kumar, G.; Huang, M. H. CsPbBr3 and CsPbI3 Rhombic Dodecahedra and Nanocubes Displaying Facet-Dependent Optical Properties. Inorg. Chem. Front. 2021, 8 (21), 4685-4695.
    8 Yang, Z.-L.; Kumar, G.; Huang, M. H. Synthesis of Zinc Blende-Phased CdSe Nanocrystals with Size-Tunable Optical Properties and Adjustable Valence Band Positions. Langmuir 2022, 38 (8), 2729-2736.
    9 Hsieh, P.-L.; Madasu, M.; Hsiao, C.-H.; Peng, Y.-W.; Chen, L.-J.; Huang, M. H. Facet-Dependent and Adjacent Facet-Related Electrical Conductivity Properties of SrTiO3 Crystals. J. Phys. Chem. C 2021, 125 (18), 10051-10056.
    10 Huang, M. H.; Naresh, G.; Chen, H.-S. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10 (1), 4-15.
    11 Kumar, G.; Chen, J.-W.; Ma, H.-H.; Huang, X.-F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of 4H-SiC Wafer. J. Mater. Chem. C 2022, 10 (28), 10424-10428.
    12 Lee, A.-T.; Tan, C.-S.; Huang, M. H. Current Rectification and Photo-Responsive Current Achieved through Interfacial Facet Control of Cu2O–Si Wafer Heterojunctions. ACS Cent. Sci. 2021, 7 (11), 1929-1937.
    13 Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15 (3), 2155-2160.
    14 Tan, C. S.; Hsieh, P. L.; Chen, L. J.; Huang, M. H. Silicon Wafers with Facet‐Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2017, 129 (48), 15541-15545.
    15 Chan, S.-J.; Kao, J.-C.; Chou, P.-J.; Lo, Y.-C.; Chou, J.-P.; Huang, M. H. 4-Nitrophenylacetylene-Modified Cu2O Cubes and Rhombic Dodecahedra Showing Superior Photocatalytic Activity through Surface Band Structure Modulation. J. Mater. Chem. C 2022, 10 (21), 8422-8431.
    16 Hsieh, M.-H.; Su, Z.-H.; Wu, E.-T.; Huang, M. H. Photocatalytic Aryl Sulfide Oxidation Using 4-Nitrophenylacetylene-Modified Cu2O Crystals. ACS Appl. Mater. Interfaces 2023, 15 (9), 11662-11669.
    17 Naresh, G.; Lee, A.-T.; Meena, V.; Satyanarayana, M.; Huang, M. H. Photocatalytic Activity Suppression of Ag3PO4-Deposited Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2019, 123 (4), 2314-2320.
    18 Patra, A. S.; Kao, J.-C.; Chan, S.-J.; Chou, P.-J.; Chou, J.-P.; Lo, Y.-C.; Huang, M. H. Photocatalytic Activity Enhancement of Cu2O Cubes Functionalized with 2-Ethynyl-6-Methoxynaphthalene through Band Structure Modulation. J. Mater. Chem. C 2022, 10 (10), 3980-3989.
    19 Yuan, G. Z.; Hsia, C. F.; Lin, Z. W.; Chiang, C.; Chiang, Y. W.; Huang, M. H. Highly Facet‐Dependent Photocatalytic Properties of Cu2O Crystals Established through the Formation of Au‐Decorated Cu2O Heterostructures. Chem. Eur. J. 2016, 22 (35), 12548-12556.
    20 Tan, C.-S.; Huang, M. H. Surface-Dependent Band Structure Variations and Bond-Level Deviations in Cu2O. Inorg. Chem. Front. 2021, 8 (18), 4200-4208.
    21 Tan, C. S.; Huang, M. H. Metal‐like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Chem. Eur. J. 2017, 23 (49), 11866-11871.
    22 Tan, C. S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal‐like Band Structures for Ultrathin Germanium (111) and (211) Surface Layers. Chem Asian J 2018, 13 (15), 1972-1976.
    23 Tan, C. S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal‐like Band Structures and Work Function Variation for Ultrathin Gallium Arsenide (111) Surface Layers. Chem Asian J 2019, 14 (13), 2316-2321.
    24 Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9 (44), 39086-39093.
    25 Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium‐Ion Batteries. Adv. Mater. 2018, 30 (33), 1800561.
    26 Yonemura, M.; Yamada, A.; Takei, Y.; Sonoyama, N.; Kanno, R. Comparative Kinetic Study of Olivine LixMPO4 (M= Fe, Mn). J. Electrochem. Soc. 2004, 151 (9), A1352.
    27 Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144 (4), 1188.
    28 Huang, H.; Yin, S.-C.; Nazar, L. s. Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates. ECS Solid State Lett. 2001, 4 (10), A170.
    29 Julien, C. M.; Zaghib, K.; Mauger, A.; Massot, M.; Ait-Salah, A.; Selmane, M.; Gendron, F. Characterization of the Carbon Coating onto LiFePO4 Particles Used in Lithium Batteries. J. Appl. Phys. 2006, 100 (6), 063511.
    30 MacNeil, D. D.; Lu, Z.; Chen, Z.; Dahn, J. R. A Comparison of the Electrode/Electrolyte Reaction at Elevated Temperatures for Various Li-Ion Battery Cathodes. J. Power Sources 2002, 108 (1-2), 8-14.
    31 Takahashi, M.; Tobishima, S.-i.; Takei, K.; Sakurai, Y. Reaction Behavior of LiFePO4 as a Cathode Material for Rechargeable Lithium Batteries. Solid State Ion 2002, 148 (3-4), 283-289.
    32 Wang, G.; Bewlay, S.; Yao, J.; Ahn, J.-H.; Dou, S.; Liu, H.-K. Characterization of LiMxFe1−xPO4 (M= Mg, Zr, Ti) Cathode Materials Prepared by the Sol-Gel Method. ECS Solid State Lett. 2004, 7 (12), A503.
    33 Fisher, C. A.; Islam, M. S. Surface Structures and Crystal Morphologies of LiFePO4: Relevance to Electrochemical Behaviour. J. Mater. Chem. 2008, 18 (11), 1209-1215.
    34 Jugović, D.; Uskoković, D. A Review of Recent Developments in the Synthesis Procedures of Lithium Iron Phosphate Powders. J. Power Sources 2009, 190 (2), 538-544.
    35 Deng, H.; Jin, S.; Zhan, L.; Qiao, W.; Ling, L. Nest-Like LiFePO4/C Architectures for High Performance Lithium Ion Batteries. Electrochim. Acta 2012, 78, 633-637.
    36 Deng, H.; Jin, S.; Zhan, L.; Wang, Y.; Qiao, W.; Ling, L. Synthesis of Cage-Like LiFePO4/C Microspheres for High Performance Lithium Ion Batteries. J. Power Sources 2012, 220, 342-347.
    37 Zhou, N.; Wang, H.-Y.; Liu, S.-Q.; Cao, G.; Liu, Y.-N. Additive-Free Morphology Controlled Synthesis of Hierarchical Lithium Iron Phosphate Mesosturctures. Int. J. Electrochem. Sci. 2013, 8, 9149-9162.
    38 Zhou, Y.; Gu, C.; Zhou, J.; Cheng, L.; Liu, W.; Qiao, Y.; Wang, X.; Tu, J. Effect of Carbon Coating on Low Temperature Electrochemical Performance of LiFePO4/C by Using Polystyrene Sphere as Carbon Source. Electrochim. Acta 2011, 56 (14), 5054-5059.
    39 Ma, Z.; Shao, G.; Fan, Y.; Wang, G.; Song, J.; Liu, T. Tunable Morphology Synthesis of LiFePO4 Nanoparticles as Cathode Materials for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6 (12), 9236-9244.
    40 Yang, X. F.; Yang, J. H.; Zhong, Y. L.; Gariepy, V.; Trudeau, M. L.; Zaghib, K.; Ying, J. Y. Hollow Melon‐Seed‐Shaped Lithium Iron Phosphate Micro‐and Sub‐Micrometer Plates for Lithium‐Ion Batteries. ChemSusChem 2014, 7 (6), 1618-1622.
    41 Lu, Z.; Chen, H.; Robert, R.; Zhu, B. Y.; Deng, J.; Wu, L.; Chung, C. Y.; Grey, C. P. Citric Acid-and Ammonium-Mediated Morphological Transformations of Olivine LiFePO4 Particles. Chem. Mater. 2011, 23 (11), 2848-2859.
    42 Lee, J.; Teja, A. S. Synthesis of LiFePO4 Micro and Nanoparticles in Supercritical Water. Mater. Lett. 2006, 60 (17-18), 2105-2109.
    43 Martins, R.; Gonçalves, R.; Costa, C.; Ferdov, S.; Lanceros-Méndez, S. Mild Hydrothermal Synthesis and Crystal Morphology Control of LiFePO4 by Lithium Nitrate. Nano-Structures & Nano-Objects 2017, 11, 82-87.
    44 Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries. Energy Environ. Sci. 2011, 4 (2), 269-284.
    45 Cheng, F.; Wang, S.; Lu, A.-H.; Li, W.-C. Immobilization of Nanosized LiFePO4 Spheres by 3D Coralloid Carbon Structure with Large Pore Volume and Thin Walls for High Power Lithium-Ion Batteries. J. Power Sources 2013, 229, 249-257.
    46 Dokko, K.; Koizumi, S.; Nakano, H.; Kanamura, K. Particle Morphology, Crystal Orientation, and Electrochemical Reactivity of LiFePO4 Synthesized by the Hydrothermal Method at 443 K. J. Mater. Chem. 2007, 17 (45), 4803-4810.
    47 Huang, X.; He, X.; Jiang, C.; Tian, G. Morphology Evolution and Impurity Analysis of LiFePO4 Nanoparticles via a Solvothermal Synthesis Process. RSC Adv. 2014, 4 (99), 56074-56083.
    48 Kang, B.; Ceder, G. Battery Materials for Ultrafast Charging and Discharging. Nature 2009, 458 (7235), 190-193.
    49 Lee, M.-H.; Kim, T.-H.; Kim, Y. S.; Song, H.-K. Precipitation Revisited: Shape Control of LiFePO4 Nanoparticles by Combinatorial Precipitation. J. Phys. Chem. C 2011, 115 (25), 12255-12259.
    50 Liu, H.; Cao, Q.; Fu, L. J.; Li, C.; Wu, Y.; Wu, H. Doping Effects of Zinc on LiFePO4 Cathode Material for Lithium Ion Batteries. Electrochem commun 2006, 8 (10), 1553-1557.
    51 Wang, Y.; He, P.; Zhou, H. Olivine LiFePO4: Development and Future. Energy Environ. Sci. 2011, 4 (3), 805-817.
    52 Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices. Adv. Mater. 2009, 21 (25-26), 2710-2714.
    53 Madasu, M.; Huang, M. H. Cu2O Polyhedra for Aryl Alkyne Homocoupling Reactions. Catal. Sci. Technol. 2020, 10 (20), 6948-6952.
    54 Muruganantham, R.; Sivakumar, M.; Subadevi, R. Synthesis and Electrochemical Characterization of Olivine-Type Lithium Iron Phosphate Cathode Materials via Different Techniques. Ionics 2016, 22, 1557-1565.
    55 Nan, C.; Lu, J.; Li, L.; Li, L.; Peng, Q.; Li, Y. Size and Shape Control of LiFePO4 Nanocrystals For Better Lithium Ion Battery Cathode Materials. Nano Res. 2013, 6, 469-477.
    56 Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814-6817.
    57 Huang, M. H. Facet‐Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15 (7), 1804726.
    58 Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Facet-Dependent Optical Properties of Pd–Cu2O Core–Shell Nanocubes and Octahedra. Nanoscale 2015, 7 (25), 11135-11141.
    59 Wang, H.-J.; Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Photothermal Effects from Au–Cu2O Core–Shell Nanocubes, Octahedra, and Nanobars with Broad Near-Infrared Absorption Tunability. Nanoscale 2016, 8 (2), 965-972.
    60 Wu, S.-H.; Hsiao, C.-H.; Hsieh, P.-L.; Huang, X.-F.; Huang, M. H. Growth of CeO2 Nanocubes Showing Size-Dependent Optical and Oxygen Evolution Reaction Behaviors. Dalton Trans. 2021, 50 (42), 15170-15175.
    61 Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Facet-Dependent Optical and Photothermal Properties of Au@ Ag–Cu2O Core–Shell Nanocrystals. Chem. Mater. 2016, 28 (14), 5140-5146.
    62 Maeyoshi, Y.; Miyamoto, S.; Noda, Y.; Munakata, H.; Kanamura, K. Effect of Organic Additives on Characteristics of Carbon-Coated LiCoPO4 Synthesized by Hydrothermal Method. J. Power Sources 2017, 337, 92-99.
    63 Rogers, R. E.; Clarke, G. M.; Matthew, O. N.; Ganter, M. J.; DiLeo, R. A.; Staub, J. W.; Forney, M. W.; Landi, B. J. Impact of Microwave Synthesis Conditions on the Rechargeable Capacity of LiCoPO4 for Lithium Ion Batteries. J Appl Electrochem 2013, 43, 271-278.
    64 Wolfenstine, J.; Allen, J. LiNiPO4–LiCoPO4 Solid Solutions as Cathodes. J. Power Sources 2004, 136 (1), 150-153.
    65 Yang, J.; Xu, J. J. Synthesis and Characterization of Carbon-Coated Lithium Transition Metal Phosphates LiMPO4 (M = Fe, Mn, Co, Ni) Prepared via a Nonaqueous Sol-Gel Route. J. Electrochem. Soc. 2006, 153 (4), A716.
    66 Zhao, Y.; Wang, S.; Zhao, C.; Xia, D. Synthesis and Electrochemical Performance of LiCoPO 4 Micron-Rods by Dispersant-Aided Hydrothermal Method for Lithium Ion Batteries. Rare Metals 2009, 28, 117-121.

    QR CODE