研究生: |
謝榕 Hsieh, Jung |
---|---|
論文名稱: |
探討磷酸激酶及磷酸酶影響線蟲神經纖毛生成及纖毛內運輸機制的可能性 Screening for putative kinases or phosphatases affecting intraflagellar transport and ciliobiogenesis in C. elegans |
指導教授: |
王歐力
Wagner, Oliver |
口試委員: |
桑自剛
潘俊良 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 纖毛 、纖毛內運輸 、磷酸激酶 、線蟲 |
外文關鍵詞: | cilia, intraflagellar transport, kinase, C.elegans |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
纖毛為細胞表面延伸之次級結構,常見於絕大多數原核及真核生物細胞,且依功能性分為初級纖毛及鞭毛,分別用於感應刺激及細胞運動。初級纖毛可感知環境刺激,藉以調控眾多細胞生理機能,許多知名的纖毛病變例如成人型多囊性腎病、先天性纖毛運動異常症、巴德-畢德氏症候群、美-格二氏綜合症及腎臟消耗病。纖毛內運輸(IFT)為纖毛生成最主要的分子機制,也調控大部分之纖毛內訊號傳遞路徑。蛋白激酶及磷酸酶對細胞訊號傳遞及分子運動的影響甚鉅,過去曾有研究證實MAP蛋白激酶、CDK相關激酶和PI 5-磷酸酶會藉纖毛內運輸機制影響纖毛生成,因此本篇論文以線蟲作為模式生物,探討特定蛋白激酶及磷酸酶對初級纖毛結構的影響。我們用一已知的纖毛基因啟動子X-box作為分子標誌,結合生物資訊工具,找出若干可能的蛋白激酶及磷酸酶基因,並利用基因轉殖技術結合螢光蛋白與纖毛內運輸機制相關之蛋白質,藉此觀察特定基因缺陷是否會影響纖毛生成及其運輸機制。我們利用RNAi及雜交技術控制螢光轉殖線蟲的基因表現,並觀察在各式不同蛋白激酶或磷酸酶的缺失之下,纖毛內運輸蛋白OSM-3、KAP-1、CHE-11及XBX-1組成之纖毛結構及分子運動情形,以鑑別此類基因是否會影響初級纖毛生成。本篇論文發現兩種蛋白激酶基因dyf-18及pkg-1 可能影響纖毛內運輸機制,實驗結果顯示若缺乏此二基因將降低線蟲對特定化學嗅覺的刺激、改變部分纖毛運輸蛋白移動速度及位置。在本篇論文結論中,我們發現若干蛋白激酶可能改變纖毛結構及其內分子運輸機制,但其詳細機制仍需待後續研究繼續探討。
Cilia are specialized subcellular organelles that project from various cell types in most eukaryotic organisms. Non-motile cilia, or primary cilia, are mainly responsible for sensory function and are recognized to have essential roles in physiology and development. As basic and highly conserved structures, cilia are also implicated in numbers of severe disorders termed ciliopathies. Examples of cilia-based human diseases are Adult polycystic kidney disease (APKD), Bardet-Biedl syndrome (BBS), Meckel-Gruber syndrome (MKS) and nephronophthisis. The intraflagellar transport (IFT) mechanism is fundamentally involved in cilia assemby and coupled with multiple intracellular signaling pathways. Importantly, previous studies revealed critical roles of a MAP kinase, a CDK-related kinase and a PI 5-phosphatase involved in IFT regulation. To identify more essential kinases or phosphatases involved in these processes, we screened for certain candidates specifically carrying the X-Box promoter motif, known to be an indicator for genes solely expressed in cilia. Using the model organism C. elegans, we screened for a dozen putative kinases and phosphatase that may affect structural intactness and basic chemosensation ability of sensory neurons as well as affect IFT. Here we employed either crossing of existing IFT reporter strains with mutant strains or by employing RNAi on the IFT wild type reporter strains. In detail, we analyzed ciliary expression pattern and motility of diverse IFT complexes, including two anterograde motors kinesin-II and OSM-3 kinesin, retrograde motor IFT-dynein, and a specific IFT complex subunit. In this study, we identified a putative novel regulator of ciliogenesis and IFT transport: the cyclic GMP-dependent protein kinase PKG-1. This enzyme causes a delayed reaction for sensing chemoattractants, alters IFT-particle localization pattern and slowed down the transport velocity of several IFT particles in the distal part of the cilia. Together, we suggest that PKG-1 may be required for proper localization and transport of IFT components in C elegans sensory cilia.
Altun, Z.F., Herndon, L.A., Crocker, C., Lints, R. and Hall, D.H. ( 2002-2010). WormAtlas.
Asikainen, S., Vartiainen, S., Lakso, M., Nass, R., and Wong, G. (2005). Selective sensitivity of Caenorhabditis elegans neurons to RNA interference. Neuroreport 16, 1995-1999.
Bae, Y.K., and Barr, M.M. (2008). Sensory roles of neuronal cilia: cilia development, morphogenesis, and function in C. elegans. Frontiers in bioscience : a journal and virtual library 13, 5959-5974.
Bae, Y.K., Kim, E., L'Hernault S, W., and Barr, M.M. (2009). The CIL-1 PI 5-phosphatase localizes TRP Polycystins to cilia and activates sperm in C. elegans. Current biology : CB 19, 1599-1607.
Baldari, C.T., and Rosenbaum, J. (2010). Intraflagellar transport: it's not just for cilia anymore. Current opinion in cell biology 22, 75-80.
Bargmann, C.I., Hartwieg, E., and Horvitz, H.R. (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515-527.
Barr, M.M. (2005). Caenorhabditis elegans as a model to study renal development and disease: sexy cilia. Journal of the American Society of Nephrology : JASN 16, 305-312.
Barr, M.M., DeModena, J., Braun, D., Nguyen, C.Q., Hall, D.H., and Sternberg, P.W. (2001). The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Current biology : CB 11, 1341-1346.
Blacque, O.E., Perens, E.A., Boroevich, K.A., Inglis, P.N., Li, C., Warner, A., Khattra, J., Holt, R.A., Ou, G., Mah, A.K., et al. (2005). Functional genomics of the cilium, a sensory organelle. Current biology : CB 15, 935-941.
Blacque, O.E., Reardon, M.J., Li, C., McCarthy, J., Mahjoub, M.R., Ansley, S.J., Badano, J.L., Mah, A.K., Beales, P.L., Davidson, W.S., et al. (2004). Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes & development 18, 1630-1642.
Boutros, M., and Ahringer, J. (2008). The art and design of genetic screens: RNA interference. Nature reviews Genetics 9, 554-566.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Burghoorn, J., Dekkers, M.P., Rademakers, S., de Jong, T., Willemsen, R., and Jansen, G. (2007). Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 104, 7157-7162.
Burghoorn, J., Piasecki, B.P., Crona, F., Phirke, P., Jeppsson, K.E., and Swoboda, P. (2012). The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box. Developmental biology.
Chen, N., Mah, A., Blacque, O.E., Chu, J., Phgora, K., Bakhoum, M.W., Newbury, C.R., Khattra, J., Chan, S., Go, A., et al. (2006). Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics. Genome biology 7, R126.
Cole, D.G., Chinn, S.W., Wedaman, K.P., Hall, K., Vuong, T., and Scholey, J.M. (1993). Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366, 268-270.
Cole, D.G., Diener, D.R., Himelblau, A.L., Beech, P.L., Fuster, J.C., and Rosenbaum, J.L. (1998). Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. The Journal of cell biology 141, 993-1008.
Collet, J., Spike, C.A., Lundquist, E.A., Shaw, J.E., and Herman, R.K. (1998). Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Genetics 148, 187-200.
Efimenko, E., Blacque, O.E., Ou, G., Haycraft, C.J., Yoder, B.K., Scholey, J.M., Leroux, M.R., and Swoboda, P. (2006). Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia. Molecular biology of the cell 17, 4801-4811.
Efimenko, E., Bubb, K., Mak, H.Y., Holzman, T., Leroux, M.R., Ruvkun, G., Thomas, J.H., and Swoboda, P. (2005). Analysis of xbx genes in C. elegans. Development 132, 1923-1934.
Emery, P., Durand, B., Mach, B., and Reith, W. (1996). RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucleic acids research 24, 803-807.
Finetti, F., Paccani, S.R., Rosenbaum, J., and Baldari, C.T. (2011). Intraflagellar transport: a new player at the immune synapse. Trends in immunology 32, 139-145.
Fire, A. (1999). RNA-triggered gene silencing. Trends in genetics : TIG 15, 358-363.
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
Goldstein, P., and Curis, M. (1987). Age-related changes in the meiotic chromosomes of the nematode Caenorhabditis elegans. Mechanisms of ageing and development 40, 115-130.
Hao, L., Efimenko, E., Swoboda, P., and Scholey, J.M. (2011). The retrograde IFT machinery of C. elegans cilia: two IFT dynein complexes? PloS one 6, e20995.
Inglis, P.N., Ou, G., Leroux, M.R., and Scholey, J.M. (2007). The sensory cilia of Caenorhabditis elegans. WormBook : the online review of C elegans biology, 1-22.
Jensen, V.L., Bialas, N.J., Bishop-Hurley, S.L., Molday, L.L., Kida, K., Nguyen, P.A., Blacque, O.E., Molday, R.S., Leroux, M.R., and Riddle, D.L. (2010). Localization of a guanylyl cyclase to chemosensory cilia requires the novel ciliary MYND domain protein DAF-25. PLoS genetics 6, e1001199.
Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome biology 2, RESEARCH0002.
Kaplan, O.I., Doroquez, D.B., Cevik, S., Bowie, R.V., Clarke, L., Sanders, A.A., Kida, K., Rappoport, J.Z., Sengupta, P., and Blacque, O.E. (2012). Endocytosis genes facilitate protein and membrane transport in C. elegans sensory cilia. Current biology : CB 22, 451-460.
Laurencon, A., Dubruille, R., Efimenko, E., Grenier, G., Bissett, R., Cortier, E., Rolland, V., Swoboda, P., and Durand, B. (2007). Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome biology 8, R195.
Liu, L., Zhang, M., Xia, Z., Xu, P., Chen, L., and Xu, T. (2011). Caenorhabditis elegans ciliary protein NPHP-8, the homologue of human RPGRIP1L, is required for ciliogenesis and chemosensation. Biochemical and biophysical research communications 410, 626-631.
Luo, M., Cao, M., Kan, Y., Li, G., Snell, W., and Pan, J. (2011). The phosphorylation state of an aurora-like kinase marks the length of growing flagella in Chlamydomonas. Current biology : CB 21, 586-591.
Mok, C.A., Healey, M.P., Shekhar, T., Leroux, M.R., Heon, E., and Zhen, M. (2011). Mutations in a guanylate cyclase GCY-35/GCY-36 modify Bardet-Biedl syndrome-associated phenotypes in Caenorhabditis elegans. PLoS genetics 7, e1002335.
Morsci, N.S., and Barr, M.M. (2011). Kinesin-3 KLP-6 regulates intraflagellar transport in male-specific cilia of Caenorhabditis elegans. Current biology : CB 21, 1239-1244.
Naz, R.K., Ahmad, K., and Kaplan, P. (1993). Involvement of cyclins and cdc2 serine/threonine protein kinase in human sperm cell function. Biology of reproduction 48, 720-728.
O'Halloran, D.M., Hamilton, O.S., Lee, J.I., Gallegos, M., and L'Etoile, N.D. (2012). Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans. PloS one 7, e31614.
Oikonomou, G., Perens, E.A., Lu, Y., Watanabe, S., Jorgensen, E.M., and Shaham, S. (2011). Opposing activities of LIT-1/NLK and DAF-6/patched-related direct sensory compartment morphogenesis in C. elegans. PLoS biology 9, e1001121.
Omori, Y., Chaya, T., Katoh, K., Kajimura, N., Sato, S., Muraoka, K., Ueno, S., Koyasu, T., Kondo, M., and Furukawa, T. (2010). Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival. Proceedings of the National Academy of Sciences of the United States of America 107, 22671-22676.
Ou, G., Blacque, O.E., Snow, J.J., Leroux, M.R., and Scholey, J.M. (2005). Functional coordination of intraflagellar transport motors. Nature 436, 583-587.
Ou, G., Koga, M., Blacque, O.E., Murayama, T., Ohshima, Y., Schafer, J.C., Li, C., Yoder, B.K., Leroux, M.R., and Scholey, J.M. (2007). Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Molecular biology of the cell 18, 1554-1569.
Pan, J., Wang, Q., and Snell, W.J. (2004). An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Developmental cell 6, 445-451.
Pan, J., Wang, Q., and Snell, W.J. (2005). Cilium-generated signaling and cilia-related disorders. Laboratory investigation; a journal of technical methods and pathology 85, 452-463.
Pazour, G.J., and Rosenbaum, J.L. (2002). Intraflagellar transport and cilia-dependent diseases. Trends in cell biology 12, 551-555.
Perkins, L.A., Hedgecock, E.M., Thomson, J.N., and Culotti, J.G. (1986). Mutant sensory cilia in the nematode Caenorhabditis elegans. Developmental biology 117, 456-487.
Phirke, P., Efimenko, E., Mohan, S., Burghoorn, J., Crona, F., Bakhoum, M.W., Trieb, M., Schuske, K., Jorgensen, E.M., Piasecki, B.P., et al. (2011). Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Developmental biology 357, 235-247.
Piasecki, B.P., Burghoorn, J., and Swoboda, P. (2010). Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals. Proceedings of the National Academy of Sciences of the United States of America 107, 12969-12974.
Poole, R.J., Bashllari, E., Cochella, L., Flowers, E.B., and Hobert, O. (2011). A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans. PLoS genetics 7, e1002109.
Porter, M.E., Bower, R., Knott, J.A., Byrd, P., and Dentler, W. (1999). Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Molecular biology of the cell 10, 693-712.
Pruliere, G., Cosson, J., Chevalier, S., Sardet, C., and Chenevert, J. (2011). Atypical protein kinase C controls sea urchin ciliogenesis. Molecular biology of the cell 22, 2042-2053.
Raizen, D.M., Zimmerman, J.E., Maycock, M.H., Ta, U.D., You, Y.J., Sundaram, M.V., and Pack, A.I. (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451, 569-572.
Rosenbaum, J. (2002). Intraflagellar transport. Current biology : CB 12, R125.
Schafer, J.C., Haycraft, C.J., Thomas, J.H., Yoder, B.K., and Swoboda, P. (2003). XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans. Molecular biology of the cell 14, 2057-2070.
Signor, D., Wedaman, K.P., Rose, L.S., and Scholey, J.M. (1999). Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans. Molecular biology of the cell 10, 345-360.
Silverman, M.A., and Leroux, M.R. (2009). Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends in cell biology 19, 306-316.
Simmer, F., Moorman, C., van der Linden, A.M., Kuijk, E., van den Berghe, P.V., Kamath, R.S., Fraser, A.G., Ahringer, J., and Plasterk, R.H. (2003). Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS biology 1, E12.
Snow, J.J., Ou, G., Gunnarson, A.L., Walker, M.R., Zhou, H.M., Brust-Mascher, I., and Scholey, J.M. (2004). Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nature cell biology 6, 1109-1113.
Swoboda, P., Adler, H.T., and Thomas, J.H. (2000). The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Molecular cell 5, 411-421.
Timmons, L., Court, D.L., and Fire, A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103-112.
Timmons, L., and Fire, A. (1998). Specific interference by ingested dsRNA. Nature 395, 854.
Tong, Y.G., and Burglin, T.R. (2010). Conditions for dye-filling of sensory neurons in Caenorhabditis elegans. Journal of neuroscience methods 188, 58-61.
Ward, S. (1973). Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proceedings of the National Academy of Sciences of the United States of America 70, 817-821.
Wiese, M., Kuhn, D., and Grunfelder, C.G. (2003). Protein kinase involved in flagellar-length control. Eukaryotic cell 2, 769-777.
Yoshida, K., Hirotsu, T., Tagawa, T., Oda, S., Wakabayashi, T., Iino, Y., and Ishihara, T. (2012). Odour concentration-dependent olfactory preference change in C. elegans. Nature communications 3, 739.