研究生: |
張維祐 Chang, Wei-Yu |
---|---|
論文名稱: |
發展桌上型像差修正掃描穿透式電鏡 Development of the Desktop Aberration-Corrected Scanning Transmission Electron Microscope |
指導教授: |
陳福榮
Chen, Fu-Rong |
口試委員: |
楊哲人
張立 劉全璞 吳文偉 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 桌上型掃描穿透電鏡 、微型化像差修正器 、可調式磁透鏡 |
外文關鍵詞: | Desktop STEM, Miniature Cs Corrector, Tunable Lens |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
與其他儀器發展的過程類似,電子光學系統也正朝向微型化的趨勢發展。桌上型的電子光學系統也在近五十年間陸續的商業化。現有桌上型掃描式電鏡利用永磁作為聚焦透鏡來達到系統微型化的目的,但微型化的同時卻也犧牲了在不同加速電壓之下調整的特性。另一方面傳統大型電鏡利用電磁線圈作為聚焦透鏡在不同加速電壓下調整強度來維持全系統的光學特性不變,然而在產生相同聚焦能力條件下,線圈所需要的體積遠大於永久磁鐵。在本論文中,我們首先結合了永磁與線圈,提出了一個桌上型電鏡聚焦透鏡模組,使此一透鏡模組在體積上完全與現有永磁透鏡體積完全相同的同時,在1kV-15kV加速電壓下維持全系統光學性質不變。
另一方面,為了有效偵測所有來自試片的訊號,我們也發展了桌上型掃描穿透式電鏡來收集穿透式片的電子訊號。藉由上述可調透鏡的使用,我們已成功拍攝了掃描穿透式電鏡的明場、暗場與環形暗場影像。
最後,為了進一步提升電鏡的解析能力與訊噪比,我們再進一步發展微型化的像差修正器模組以與現有桌上型電鏡相匹配。在本論文中,我們嘗試利用上述可調式透鏡與永久磁鐵作為傳遞透鏡,來實現像差修正理論中六極球差修正器所需要滿足的透鏡條件。從模擬結果可以知道,藉由適當的傳遞透鏡與六極透鏡設計,可調透鏡能補償由於透鏡製作上產生的誤差,此一模組可以產生負的球差來修正電子束斑至0.5奈米以下。
The desktop Electron Microscopes (desktop EMs) have been commercialized in the recent years. A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larger. Here, we propose a tunable condenser lens for a tabletop SEM that uses a combination of permanent magnets and electromagnetic coils. The overall dimensions of the newly designed lens are the same as the original permanent magnet lens, but the new lens allows the tabletop SEM to be operated at different accelerating voltages between 1 kV and 15 kV.
On the other hand, in order to collect all the signals from the specimen, we develop the desktop scanning transmission electron microscope to collect the transmission electron signals from the specimen. And by using the tunable lens in the previous section, we have been successfully recording Bright Field (BF), Dark Field (DF), and the High Angle Annular Dark Field (HAADF) image.
Finally for the purpose of further improvement in spatial resolution and signal / noise, one may need an aberration corrector with a compact form to fit into a desktop EM. In this paper, the permanent magnets with tunable coil are implemented as a transfer lens doublet to realize a compact hexapole corrector for a desktop EM. It will be shown that, with a proper design of permanent magnet transfer lens doublet and hexapole lens, we can generate a negative Cs and avoid the second-order axial astigmatism to reduce the final spot size at the sample plane to be better than 0.5 nm for a field emission source. To fulfill with the required condition of a hexapole corrector, a tunable lens is implemented to adjust the magnetic field for compensating the practical error from the permanent magnet.
[1] D.B. Williams, C.B. Carter, The transmission electron microscope, in: Transmission electron microscopy, Springer, 1996, pp. 3-17.
[2] R.E. Lee, Scanning electron microscopy and X-ray microanalysis, PTR Prentice Hall, 1993.
[3] J. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig Jr, C.E. Lyman, C. Fiori, E. Lifshin, Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists, Springer Science & Business Media, 2012.
[4] 張維祐, 曾英碩, 方建閔, 陳福榮, 新世代桌上型電子顯微鏡的設計與製作, 科儀新知, (2013) 4-13.
[5] H.H. Rose, Geometrical charged-particle optics, Springer, 2009.
[6] J. Zach, M. Haider, Aberration correction in a low voltage SEM by a multipole corrector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 363 (1995) 316-325.
[7] H. Schatten, J.B. Pawley, Biological low-voltage scanning electron microscopy, Springer, 2008.
[8] D. Maas, S. Henstra, M. Krijn, S. Mentink, Electrostatic aberration correction in low-voltage SEM, in: Proc. SPIE, 2001, pp. 205-217.
[9] S. Asahina, T. Togashi, O. Terasaki, S. Takami, T. Adschiri, M. Shibata, N. Erdman, High-resolution low-voltage scanning electron microscope study of nanostructured materials, Microscopy and Analysis, 2 (2012) S12-S14.
[10] R. Richards, G.R. Owen, I. Ap Gwynn, Low voltage backscattered electron imaging (< 5 kV) using field emission scanning electron microscopy, Scanning Microsc, 13 (1999) 55-60.
[11] D.C. Joy, C.S. Joy, Low voltage scanning electron microscopy, Micron, 27 (1996) 247-263.
[12] H.A. Béarat, Low Voltage Scanning Electron Microscopy: Promises and Challenges, in, Application Note# 5991-0736EN, Agilent Technologies Inc. 2012, 4p.
[13] Y. Beyer, R. Beanland, P. Midgley, Low voltage STEM imaging of multi-walled carbon nanotubes, Micron, 43 (2012) 428-434.
[14] F. Boerrnert, A. Bachmatiuk, B. Buechner, M. Ruemmeli, Low-voltage aberration-corrected transmission electron microscopy: progressing carbon nanostructures, Microscopy: Science, Technology, Applications and Education, 1852 (1846).
[15] A. Morikawa, C. Kamiya, S. Watanabe, M. Nakagawa, T. Ishitani, Low-voltage dark-field STEM imaging with optimum detection angle, Microscopy and Microanalysis, 12 (2006) 1368.
[16] H.A. Béarat, Potential of Low Voltage Scanning Electron Microscopy Use in Archaeology and History of Art: A Preliminary Study.
[17] B. Buijsse, Particle-optical apparatus with a permanent-magnetic lens and an electrostatic lens, in, Google Patents, 2006.
[18] J. Lepoole, Permanent magnet lens system, in, Google Patents, 1974.
[19] A. Khursheed, J.T. Thong, J. Phang, I. Ong, Miniature scanning electron microscope design based upon the use of permanent magnets, in: Optical Science, Engineering and Instrumentation'97, International Society for Optics and Photonics, 1997, pp. 175-184.
[20] E.Munro’s ElectronBeamSoftwareLtd. http://mebs.co.uk/, in.
[21] Munro's Lecture Note.
[22] 吕建钦, 带电粒子束光学, 高等敎育出版社, 2004.
[23] 唐天同, 应用带电粒子光学引论, 西安交通大学出版社, 1986.
[24] 杜秉初, 汪健如, 电子光学, 清华大学出版社有限公司, 2002.
[25] J. Orloff, Charged Particle Optics, Wiley Online Library, 2009.
[26] M. Kato, K. Tsuno, Numerical analysis of trajectories and aberrations of a Wien filter including the effect of fringing fields, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 298 (1990) 296-320.
[27] D. Ioanoviciu, K. Tsuno, G. Martinez, Third order aberration theory of double Wien filters, Review of scientific instruments, 75 (2004) 4434-4441.
[28] K. Tsuno, D. Ioanoviciu, G. Martinez, Third‐order aberration theory of Wien filters for monochromators and aberration correctors, Journal of microscopy, 217 (2005) 205-215.
[29] http://www.globalsino.com/EM/page3752.html, in.
[30] http://www.globalsino.com/EM/page3740.html, in.
[31] R. Brydson, Aberration-corrected analytical transmission electron microscopy, John Wiley & Sons, 2011.
[32] H. Rose, Correction of aperture aberrations in magnetic systems with threefold symmetry, Nuclear Instruments and Methods in Physics Research, 187 (1981) 187-199.
[33] M. Haider, P. Hartel, H. Müller, S. Uhlemann, J. Zach, Current and future aberration correctors for the improvement of resolution in electron microscopy, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 367 (2009) 3665-3682.
[34] C. Weißbäcker, H. Rose, Electrostatic correction of the chromatic and of the spherical aberration of charged‐particle lenses, Journal of electron microscopy, 50 (2001) 383-390.
[35] H.H. Rose, Historical aspects of aberration correction, Journal of electron microscopy, 58 (2009) 77-85.
[36] F. Hosokawa, T. Tomita, M. Naruse, T. Honda, P. Hartel, M. Haider, A spherical aberration‐corrected 200 kV TEM, Journal of electron microscopy, 52 (2003) 3-10.
[37] H. Rose, D. Preikszas, Time-dependent perturbation formalism for calculating the aberrations of systems with large ray gradients, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 363 (1995) 301-315.
[38] H. Müller, S. Uhlemann, P. Hartel, M. Haider, Advancing the hexapole Cs-corrector for the scanning transmission electron microscope, Microscopy and Microanalysis, 12 (2006) 442-455.
[39] K. Honda, S. Takashima, Chromatic and spherical aberration correction in the LSI inspection scanning electron microscope, JEOL News, 38 (2003) 36-40.
[40] L. Baranova, F. Read, D. Cubric, Computer simulation of hexapole aberration correctors, Technical Physics, 54 (2009) 1011-1017.
[41] F. Hosokawa, H. Sawada, Y. Kondo, K. Takayanagi, K. Suenaga, Development of Cs and Cc correctors for transmission electron microscopy, Microscopy, 62 (2013) 23-41.
[42] A. Bleloch, A. Lupini, Imaging at the picoscale, Materials Today, 7 (2004) 42-48.
[43] R.W. Moses Jr, Quadrupole‐Octopole Aberration Correctors with Minimum Fields, Review of Scientific Instruments, 42 (1971) 832-839.
[44] O. Krivanek, P. Nellist, N. Dellby, M. Murfitt, Z. Szilagyi, Towards sub-0.5 Å electron beams, Ultramicroscopy, 96 (2003) 229-237.
[45] O. Krivanek, N. Dellby, A. Lupini, Towards sub-Å electron beams, Ultramicroscopy, 78 (1999) 1-11.
[46] W. Wan, Aberration Correction in Microscopes.
[47] K. Tsuno, D. Ioanoviciu, G. Martinez, 2π-Wien filters with negative aberrations.
[48] G. Martı́nez, K. Tsuno, BEM simulation of Wien filters, Ultramicroscopy, 93 (2002) 253-261.
[49] G. Martı́nez, K. Tsuno, Design of Wien filters with high resolution, Ultramicroscopy, 100 (2004) 105-114.
[50] M. Terauchi, M. Tanaka, K. Tsuno, M. Ishida, Development of a high energy resolution electron energy-loss spectroscopy microscope, Journal of microscopy, 194 (1999) 203-209.
[51] K. Tsuno, Electron optical analysis of a high‐resolution electron energy loss spectrometer with a retarding Wien filter, Review of scientific instruments, 63 (1992) 4112-4121.
[52] K. Tsuno, Monochromators in electron microscopy, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 645 (2011) 12-19.
[53] K. Tsuno, Simulation of a Wien filter as beam separator in a low energy electron microscope, Ultramicroscopy, 55 (1994) 127-140.
[54] K. Tsuno, J. Rouse, Simulation of electron trajectories of Wien filter for high-resolution EELS installed in TEM, Microscopy, 45 (1996) 417-427.
[55] G. Martínez, K. Tsuno, The use of multipole fields for aberration correction in π/2 Wien filters, Physics Procedia, 1 (2008) 193-198.
[56] O. Krivanek, G. Corbin, N. Dellby, B. Elston, R. Keyse, M. Murfitt, C. Own, Z. Szilagyi, J. Woodruff, An electron microscope for the aberration-corrected era, Ultramicroscopy, 108 (2008) 179-195.
[57] 華中一, 顧昌鑫, 電子光學, 復旦大學出版社, 1990.
[58] W.-Y. Chang, F.-R. Chen, Wide-range tunable magnetic lens for tabletop electron microscope, Ultramicroscopy, 171 (2016) 139-145.
[59] W.-Y. Chang, F.-R. Chen, T.-H. Lee, T.-W. Huang, Desktop electron microscope and wide range tunable magnetic lens thereof, in, Google Patents, 2016.
[60] ANSYS,Inc:ANSYSMaxwell. www.ansys.com/Products/SimulationþTechnol ogy/, in.
[61] M. Shiojiri, Imaging of High-Angle Annular Dark Field Scanning Transmission Electron Microscopy and Microscopy Studies of GaN-based Light Emitting Diodes and Laser Diodes, CHIANG MAI JOURNAL OF SCIENCE, 35 (2008) 495-520.
[62] M. Shiojiri, T. Yamazaki, Atomic resolved HAADF-STEM for composition analysis, JEOL news, 38 (2003) 54.
[63] X.F. Zhang, A 200-kV STEM/SEM Produces 1 Å SEM Resolution, Microscopy Today, 19 (2011) 26-29.
[64] K. Ganesh, M. Kawasaki, J. Zhou, P. Ferreira, D-STEM: A parallel electron diffraction technique applied to nanomaterials, Microscopy and Microanalysis, 16 (2010) 614-621.