研究生: |
呂俊儀 Lu, Chun-Yi |
---|---|
論文名稱: |
奈米碳管高分子電熱膠及其應用 Multi-walled carbon nanotubes/epoxy composites as resistive elements and their application in building materials |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: |
薛森鴻
呂昇益 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 多壁奈米碳管 、發熱地暖建材 、導電高分子 、環氧樹脂 、複合材料 |
外文關鍵詞: | MWCNT, Heating floor, Epoxy, Composite, Conductive polymer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自90年代初期奈米碳管被發現以來,其良好之導熱、導電、機械性質使科學家爭相研究。環氧樹脂於固化前有著良好的可塑性,可填入各種硬建材之縫隙、接點;固化後性質穩定、不易變形。基於上述之優良性質,將多壁奈米碳管和環氧樹脂以適當比例混合均勻,稱之『奈米碳管高分子電熱膠(MWCNTs/Polymer Composite)』。此複合材有著加熱效率高、溫度分布均勻、易施工、以及成本低等優點。本實驗針對奈米碳管電熱膠分成兩種不同的地暖建材應用及討論:
1. 可升溫暖木地板
2. 可升溫暖水泥地板
於實驗結果中發現相較於使用電阻絲或熱水作為加熱媒介之傳統地暖建材,本實驗之可升溫木地板、水泥試片採用奈米碳管高分子電熱膠作為加熱媒介,確實有較佳之升溫速率、較低之降溫速率(保溫效果佳)、較佳之表面溫度均勻性、較低之成本等優點,因此極具商業潛力,期待能為地暖建材界帶來貢獻。
Owing to their outstanding thermal, electric conductivity and mechanical strength, carbon nanotubes (CNTs), discovered in early 1990’s, have drawn much attention in recent years and become an hot issue in nanotechnology. Study reveals that CNTs can combine with various materials to form composites, such as polymers and oxides. Epoxy has a low volume contraction after curing and form conductive composites with CNTs at low filling fraction. Study here focuses on electro-thermal properties of composites made from epoxy and multi-walled CNTs and results indicate that composites can be used as resistive elements. We then introduce composites into building materials to create heating system embedded in floor timber and floor cement. Results show that composites loaded floors display a greater heating rate, lower cooling rate (i.e. a greater heat preservation), lower temperature gradient (i.e. uniform dispersion of temperature) and lower cost compared with existing devices using resistive filaments and circulating hot water.
[1] Ijima, S., Nature, 354, 56(1991).
[2] Demczyk, B. G., et al. (2002). "Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes." Materials Science and Engineering: A 334(1–2): 173-178.
[3] Languillaume, J., et al. (1997). "Evolution of the tensile strength in heavily cold drawn and annealed pearlitic steel wires." Materials Letters 33(3): 241-245.
[4] Nanotechnology 11 (2000) 65–69, Jianwei Che, Tahir ¸Cagın and William A Goddard III, Thermal conductivity of carbon nanotubes.
[5] Sharma, A., et al. (2016). "A carbon nanotube field-emission X-ray tube with a stationary anode target." Microelectronic Engineering 152: 35-40.
[6] Bansal, S., et al. (2017). "Effect of MWCNT Composition on the Hardness of PP/MWCNT Composites." Materials Today: Proceedings 4(2, Part A): 3867-3871.
[7] Shamim Sarker, M., et al. (2016). "Gate dielectric strength dependent performance of CNT MOSFET and CNT TFET: A tight binding study." Results in Physics 6: 879-883.
[8] Tanaka, K., et al. (1999). Chapter 5 - Electronic Structures of Single-Walled Carbon Nanotubes. The Science and Technology of Carbon Nanotubes. Oxford, Elsevier Science Ltd: 40-50.
[9] Hanada, T., et al. (1999). Chapter 4 - Structure of Multi-Walled and Single-Walled Carbon Nanotubes. EELS Study A2 - Tanaka, Kazuyoshi. The Science and Technology of Carbon Nanotubes. T. Yamabe and K. Fukui. Oxford, Elsevier Science Ltd: 29-39.
[10] Dresselhaus, M. S., et al. (1995). "Physics of carbon nanotubes."Carbon 33(7): 883-891.
[11] Dresselhaus, M. S., et al. (1995). "Physics of carbon nanotubes."Carbon 33(7): 883-891.
[12] Dresselhaus, M. S., et al. (1995). "Physics of carbon nanotubes."Carbon 33(7): 883-891.
[13] Hanada, T., et al. (1999). Chapter 4 - Structure of Multi-Walled and Single-Walled Carbon Nanotubes. EELS Study A2 - Tanaka, Kazuyoshi. The Science and Technology of Carbon Nanotubes. T. Yamabe and K. Fukui. Oxford, Elsevier Science Ltd: 29-39.
[14] Khoshnevisan, B., et al. (2013). "Diameter and chirality effects of narrow SWCNTs on molecular hydrogenation." International Journal of Hydrogen Energy 38(11): 4618-4621.
[15] Kayvani Fard, A., et al. (2016). "Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal." Chemosphere 164: 142-155.
[16] Gallego, J., et al. (2013). "Intershell spacing changes in MWCNT induced by metal–CNT interactions." Micron 44: 463-467.
[17] Gallego, J., et al. (2013). "Intershell spacing changes in MWCNT induced by metal–CNT interactions." Micron 44: 463-467.
[18] Hanada, T., et al. (1999). Chapter 4 - Structure of Multi-Walled and Single-Walled Carbon Nanotubes. EELS Study A2 - Tanaka, Kazuyoshi. The Science and Technology of Carbon Nanotubes. T. Yamabe and K. Fukui. Oxford, Elsevier Science Ltd: 29-39.
[19] Liu, J., et al. (2017). "The electronic properties of chiral carbon nanotubes." Computational Materials Science 129: 290-294.
[20]Nano-tube CH5, NTHU course,Wen Kun Hsu
[21]http://pubs.rsc.org/en/content/articlehtml/2012/cs/c2cs15334c
[22] Nanotechnology 11 (2000) 65–69, Jianwei Che, Tahir ¸Cagın and William A Goddard III, Thermal conductivity of carbon nanotubes.
[23] Jin, F.-L., et al. (2015). "Synthesis and application of epoxy resins: A review."Journal of Industrial and Engineering Chemistry 29: 1-11.
[24] Gogoi, S., et al. (2015). "Cross-linking kinetics of hyperbranched epoxy cured hyperbranched polyurethane and optimization of reaction conversion by central composite design." Chemical Engineering Science 127: 230-238.
[25] Mir, S. M., et al. (2016). "A promising approach to low electrical percolation threshold in PMMA nanocomposites by using MWCNT-PEO predispersions." Materials & Design 111: 253-262.
[26] Seleznev, B. V., et al. (1995). "Thermal diffusivity measurements by “instantaneous phase portrai” method." Diamond and Related Materials 4(12): 1360-1362.
[27]Adv.Mater, 11, 937, 1999
[28] http://www.researchmfg.com/2010/08/flexural-strength/
[29]http://home.appledaily.com.tw/article/index/20141212/36260559/news/%E5%8F%B0%E7%81%A3%E5%B8%B8%E7%94%A8%E9%9B%BB%E5%9C%B0%E6%9A%96%E6%9C%A8%E5%9C%B0%E6%9D%BF%E5%B0%88%E7%94%A8%E6%96%BD%E5%B7%A5%E5%BF%AB