簡易檢索 / 詳目顯示

研究生: 謝政杰
Cheng-Jay Xie
論文名稱: 多輸入多輸出正交分頻多工系統之同步機制
A Synchronization Scheme for MIMO-OFDM Systems
指導教授: 王晉良
Chin-Liang Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
中文關鍵詞: 多輸入多輸出同步正交分頻多工
外文關鍵詞: MIMO, OFDM, synchronization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多輸入多輸出正交分頻多工(MIMO-OFDM)系統是一種結合MIMO信號處理和OFDM的新傳輸架構,在本篇論文中,我們針對MIMO-OFDM提出一個全新且完整的同步機制,包含了粗調時間擷取(coarse time acquisition),載波頻率偏移粗略估計(coarse carrier frequency offset estimation),細調時間擷取(fine time acquisition),載波頻率偏移細部估計(fine carrier frequency offset estimation)。在提出的同步機制中,粗調時間擷取和載波頻率偏移粗略估計是採用舊有的OFDM同步技術,目的是要先取得同步上初步的估計子,因為接下來的細調時間擷取和載波頻率偏移細部估計需要有初步的同步資訊來協助運作。我們所提出的細調時間擷取是根據MIMO-OFDM的離散傅立葉通道估測法(DFT-based channel estimation)所估計出的通道增益的資訊來做細部時間的擷取,此方法可以提供從任一傳送端所傳送到任一接收端支線的信號一個準確且專屬的信號起始點。利用細調時間擷取所得到的資訊,我們可以對載波頻率偏移估計決定一個適當的相關性運算的範圍來得到較好的估計效能。由電腦模擬結果可看出本篇論文所提出的細調時間擷取方法和傳統的同步方法比較下,會有明顯效能增益,且效能不會隨著天線數增加而有所影響。除此之外,摩結果也可看出本篇論文所提出的載波頻率偏移細部估計的確可以利用細調時間擷取所得到的資訊來決定出適當相關性運算的起始點和運算的範圍來提供效能更好的載波頻率偏移估計器。


    Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) is a new transmission scheme that combines MIMO signal processing and OFDM techniques. In this thesis, we propose a new training sequence structure along with a complete synchronization scheme for MIMO-OFDM systems. The proposed synchronization scheme includes coarse time acquisition, coarse carrier frequency offset estimation, fine time acquisition, and fine carrier frequency offset estimation. In the proposed synchronization scheme, we adopt existing techniques to obtain initial timing and frequency offset estimates for the proposed fine time acquisition and fine frequency offset estimation methods. The proposed fine time acquisition method is assisted by the estimated channel gain, which is obtained by a recently proposed DFT-based channel estimator. The proposed approach is able to provide each transmit-receive branch with an accurate and dedicated timing instant. Based on the timing instants obtained, the proposed fine carrier frequency offset estimator decides a proper correlation range to obtain a better estimate. Computer simulation results show that, the proposed fine time acquisition method can provide significant performance gain over a conventional method. Unlike the conventional method, the proposed approach provides accurate and comparable estimates regardless of the number of transmit antennas. In addition, the proposed fine carrier frequency offset estimator can improve the coarse frequency offset estimator by finding a proper correlation range and averaging estimates obtained from different transmit-receive branches.

    Contents Abstract i Contents iii List of Figures v List of Tables vii Chapter 1 Introduction 1 Chapter 2 MIMO-OFDM Basics 5 2.1 MIMO Channel Capacity [14] 5 2.2 MIMO-OFDM System Model 7 2.3 Synchronization Errors in MIMO-OFDM Systems 10 Chapter 3 Synchronization scheme for MIMO-OFDM System 12 3.1 Conventional synchronization techniques for MIMO-OFDM 12 3.2 Preamble Design 13 3.3 Coarse Time Acquisition 15 3.4 Coarse Frequency Offset Estimation 16 3.5 Fine Time Acquisition 17 3.6 Fine Frequency Offset Estimation 21 3.7 Channel Estimation 22 Chapter 4 Simulation Results 23 Chapter 5 Conclusions 30 References 31

    [1] H. Sampath, S Talwar, J. Tellado, V. Erceg, and A. Paulraj, “A fourth-generation MIMO-OFDM broadband wireless system: design, performance, and field trial results,” IEEE Commun. Mag., vol. 40, pp.143-149, Sept. 2002.
    [2] IEEE 802.11a Standard, ISO/IEC 8802-11:1999/Amd 1:2000(E).
    [3] IEEE 802.11g Standard, Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band.
    [4] G. L. Stüber, Principles of Mobile Communications. Norwell, MA: Kluwer, 2001.
    [5] G. J. Foschini, ”Layered space-time architecture for wireless communications in a fading environment when using multiple antennas,” Bell Labs Syst. Tech. J., vol. 1, pp. 41-59, Autumn 1996.
    [6] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston/London: Artech House, 1999.
    [7] “Orthogonal Frequency Division Multiplexing,” U.S. Patent No. 3, 488-4555, filed Nov. 14, 1966, issued Jan. 6, 1970.
    [8] J. Terry and J. Heiskala, OFDM Wireless LANs: A Treoretical and Practical Guide. Indianapolis, Indiana: Sams, 2002.
    [9] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun., vol. 19, pp. 628-634, Oct. 1971.
    [10] A. Goldsmith, S. A. Jafar, N. Jindal and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Select. Areas Commun., vol. 21, pp. 684-702, June 2003.
    [11] T. C. W. Schenk and A. van Zelst, “Frequency synchronization for MIMO OFDM wireless LAN systems,” in Proc. 2003 IEEE Veh. Technol. Conf.- Fall (VTC 2003-Fall), Oct. 2003, pp. 781-785.
    [12] A. van Zelst and T. C. W. Schenk, “Implementation of a MIMO OFDM-based wireless LAN system,” IEEE Trans. Signal Processing, vol. 52, pp. 483-494, Feb. 2004.
    [13] H. Torii and N. Suehiro, “Expansion of modulation for modulatable orthogonal sequences,” in Proc. 1998 IEEE Int. Symp. Inform. Theory, Aug. 1998, pp. 105.
    [14] A. N. Mody and G.L Stüber, “Receiver implementation for a MIMO OFDM system,” in Proc. 2002 IEEE Global Telecommun. Conf., Nov. 2002, pp. 716-720.
    [15] G. D. Durgin, Space-Time Wireless Channels. Upper Saddle River : Prentice-Hall, 2003.
    [16] M. Speth and H. Meyr, “Synchronization requirements for COFDM systems with transmit diversity,” in Proc.2003 IEEE Global Telecommun. Conf., Dec. 2003, pp. 1252-1256.
    [17] I. Barhumi, G. Leus and M. Moonen, “Optimal training sequences for channel estimation in MIMO OFDM systems in mobile wireless channels,” in Proc. 2002 International Zurich Seminar Broadband Commun., pp. 44-1 - 44-6, Feb. 2002.
    [18] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Comm., vol. 45, pp. 1613-1621, Dec. 1997.
    [19] K. Zheng, G. Zheng and W. Wang, “A novel uplink channel estimation in OFDM-CDMA systems,” IEEE Trans. Consumer Electron., vol. 50, pp. 125-129, Feb. 2004.
    [20] J. J. van de Beek, M. Sandell and P. O. Börjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Processing, vol. 45, pp. 1800-1805, July 1997.
    [21] Y. S. Lim and J. H. Lee, “An efficient carrier frequency offset estimation scheme for an OFDM system,” in Proc. 2000 IEEE Veh. Technol. Conf. - Fall (VTC 2000-Fall), Sept. 2000, pp. 2453-2457.
    [22] A. Stamoulis, S. N. Diggavi and N. Al-Dhahir, “Intercarrier interference in MIMO OFDM,” IEEE Tran. Signal Processing, vol. 50, pp. 2451-2464, Oct. 2002.
    [23] P. Priotti, “Frequency synchronization of MIMO OFDM systems with frequency-selective weighting,” in Proc. 2004 IEEE Veh. Technol. Conf. - Spring (VTC 2004-Spring), May 2004, pp. 1114-1118.
    [24] U. Tureli, R. Ambati, D. Kivanc and Liu Hui, “Performance analysis of OFDM carrier synchronization with diversity,” in Proc. 2002 IEEE Veh. Technol. Conf. - Fall (VTC 2002-Fall), Sept. 2002, pp. 33-37.
    [25] Y. Ogawa, K. Nishio, T. Nishimura and T. Ohgane, “Channel and frequency offset estimation for a MIMO-OFDM system,” in Proc. 2004 IEEE Veh. Technol. Conf. - Fall (VTC 2004- Fall), Sept. 2004, pp. 1523-1527.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE