簡易檢索 / 詳目顯示

研究生: 吳孟儒
Meng-Ju Wu
論文名稱: 從影像序列自動重建三維人臉模型的改良系統
Improved Automatic 3D Human Face Model Reconstruction from Image Sequence
指導教授: 陳永昌
Yung-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 56
中文關鍵詞: 電腦視覺3D模型重建影像處理樣型識別3D人臉
外文關鍵詞: 3D model reconstruction, computer vision, pattern classification, 3D face
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的研究中3D人臉模型的重建仍是一個重要主題。由於2D的人臉辨識及合成技術已遭遇到瓶頸,3D人臉模型在辨識與合成上可以提供優於2D人臉影像的準確率與效能。但3D掃描設備價格高昂不易取得,從2D影像序列中重建出3D模型是一個較方便的方法。
    從2D影像中重建3D人臉模型有兩個主要的研究方向,第一個是可形變模型(Morphable Model),其準確度較高。另一個方法則是從運動資訊來估測3D模型(SfM),此方法的重建速度較快。
    在這篇論文中,我們提出一個從影像序列自動重建三維人臉模型的改良系統,此系統包含了一個前處理、AAM特徵點萃取,3D模型重建以及模型的精煉。重建人臉模型的部分是基於從運動資訊估測3D模型的方法。我們在這個系統上加上了一個姿態分類的前處理來尋找影像序列中的關鍵影像,以減少對整個影像序列萃取特徵點的時間。最後提出了一個模型精煉的方法來增加模型的精細度。
    我們的方法可以有效減少特徵點萃取所需的時間,並得到一個品質不錯的3D人臉模型。系統整體運算時間也在可接受的合理範圍內。


    3D Face Reconstruction is an important research topic nowadays. Because of the bottleneck on 2D Face Recognition and Face Synthesis technique, 3D Face Model has better accuracy and performance than 2D Face Image on Recognition and Synthesis. But 3D scan equipment is really expensive and hard to acquire. 3D model Reconstruction from 2D images is a cheaper way to get 3D data.
    There are 2 main approaches for 3D face model reconstruction from 2D images. The first approach is Morphable Model proposed by Volker Blantz. Another approach is a factorization method based on Structure from Motion (SfM) proposed by Kanade. Morphable model has high accuracy, but takes much time for model fitting. SfM has lower accuracy than morphable model, but SfM is fast.
    In this thesis, an automatic 3D model reconstruction system in image sequence is proposed. This system is based on SfM method. It contains modifying AAM feature extraction, model reconstruction and a refinement process we proposed.
    In the experiment, our method can reduce the time spent in the feature extraction process. Our method also can reconstruct a 3D model which has good quality. The speed of this system is also acceptable.

    Chapter1 Introduction 1 1.1 3D Computer Vision 1 1.2 Automatic 3D Face Reconstruction System 1 1.3 Motivation 2 1.4 Thesis Organization 3 Chapter2 Related Works 4 2.1 Overview 4 2.2 Feature Extraction 4 2.3 3D Model Reconstruction 8 Chapter3 System Overview 11 3.1 Overview 11 3.2 Feature Extraction 11 3.3 Model Reconstruction 11 Chapter4 Feature Extraction Including Pose Classification Pre-processing 14 4.1 Face Location 14 4.1.1 Skin Color Detection 15 4.1.2 Basic Morphologic Operation and Geometry for Image Processing 17 4.1.3 Basic Knowledge of Human Face 19 4.1.4 Face Location by Knowledge-based method 19 4.2 Pose Classification 19 4.2.1 Principal Component Analysis (PCA) 20 4.2.2 Two-Dimensional Principal Component Analysis (2DPCA) 21 4.2.3 Probabilistic Support Vector Machine 22 4.2.3.1 Support Vector Machine (SVM) 22 4.2.3.2 Probability Estimation for SVM 24 4.2.4 Proposed Pose Classification 25 4.3 Feature Extraction by Active Appearance Model 29 4.3.1 Active Appearance Model (AAM) 29 4.3.3.1 Shape 30 4.3.3.2 Texture 30 4.3.3.1 Texture and Shape Combination 31 4.3.3.2 Model Fitting 31 4.3.2 Feature Extraction 31 4.4 Summary 33 Chapter5 Model Reconstruction 34 5.1 3D shape Reconstruction Using Factorization Method 35 5.2 Model Refinement 37 5.2.1 Delaunay Triangulation 38 5.2.2 Subdivision and Refinement 39 5.3 Texture Mapping 42 5.4 Summary 42 Chapter6 Experimental Result and Discussion 43 6.1 Facial Feature Extraction 44 6.2 Model Reconstruction 47 Chapter7 Conclusion and Future Works 52 Reference 54

    [1] Y. C. Cheng, “Analysis and Synthesis of Facial Expressions for Virtual Conferencing Systems”, Ph. D. Dissertation in National Tsing Hua University, EE Dept., 2003

    [2] U. Park and A. K. Jain, ”3D Model-based face Recognition in video”, The 2nd International Conference on Biometrics, Seoul, Korea, 2007

    [3] S. Von Duhn, L. Yin, M. J. Ko, and T. Hung, “Multiple-View Face Tracking For Modeling and Analysis Based On Non-Cooperative Video Imagery”, Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2007

    [4] W. X. LIN, G PAN, Z. H. WU, Y. H. PAN, ”A Survey on Facial Features Localization”, Journal of Image and Graphics, vol.8, no.8, pp.849-859, 2003.

    [5] G. Yang and T. S. Huang, “Human Face Detection in Complex Background”, Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994

    [6] C. Kotropoulos and I. Pitas, “Rule-based Face Detection in Frontal Views”, Proc. International Conference on Acoustic, Speech and Signal Processing, vol. 4, pp.2537-2540, 1997

    [7] L.M. Zhang and P. Lenders, “Knowledge-based eye detection for human face recognition”, Proc. Knowledge-Based Intelligent Engineering Systems and Allied Technologies, vol.1 pp. 117~120, 2000

    [8] D. Reisfeld and Y. Yeshurun, “Robust detection of facial features by generalized symmetry”, Proc. International Conference on Pattern Recognition, pp.117~120, 1992

    [9] R. L. Hsu, M Abdel-Mottaleb, A. K. Jain, “Face Detection in Color Images”, IEEE Transactions on Pattern Recognition and Machine Intelligence, vol. 24, no. 5, pp. 696-706, 2002

    [10] E. Osuna, R. Freund, F. Girosi, “Training Support Vector Machines: An Application to Face Detection”, Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 130-136, 1997

    [11] A. L. Yuille, P. W. Hallinan and D. S. Cohen, “Feature extraction from faces using deformable templates”, International Journal of Computer Vision, vol. 8, no. 2, pp.99-111, 1992

    [12] M. Kass, A. Witkin, D. Terzopoulos “Snakes: active contour models”, Proc. International Conference on Computer Vision, pp. 259-268, 1987

    [13] T. F. Cootes and C. J. Taylor,“Active shape models – ’smart snakes’.” In Proc. British Machine Vision Conf., BMVC92, pages 266–275, 1992

    [14] G. Edwards, C. J. Taylor, and T. F. Cootes, “Interpreting face images using active appearance models”, 3rd International Conference on Automatic Face and Gesture Recognition, pp. 300–305, 1998

    [15] C.Y. Kin and R. Cipolla, “A probabilistic framework for perceptual grouping of features for human face Detection”, Proc. 2nd International Conference on Automatic Face and Gesture Recognition, 1996

    [16] R.S. Feris, J. Gemmell, K. Toyama, V. Kruger, “Hierarchical Wavelet Networks for Facial Feature Localization”, Proc. 5th International Conference Automatic Face and Gesture Recognition, pp.118-123, 2002

    [17] J. Huang, X. Shao, H. Wechsler, “Face pose discrimination using support vector machines (SVM)”, Proc. 14th International Conference on Pattern Recognition, pp. 154-156, 1998

    [18] V. Blanz and T. Vetter, “A Morphable Model for the Synthesis of 3D Faces”, Computer Graphics Proc. SIGGRAPH ’99, pp. 187-194, 1999

    [19] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: a factorization method”, International Journal of Computer Vision, vol. 9, no. 2, pp.137-154,1992

    [20] J. Xiao, J. Chai, T. Kanade, “A Closed-Form Solution to Non-Rigid Shape and Motion Recovery”, International Journal of Computer Vision, vol. 67, pp.233-246, 2006

    [21] J. Hou, Q. X. Gao, Q. Pan, H. C. Zhang , “Essence of 2DPCA and Modification Method for Face Recognition”, Proc. 5th International Conference on Machine Learning and Cybernetics, pp.3351-3353, 2006

    [22] R. O. Duda, P. E. Hart, D. G. Stork, “Pattern Classification”, 2nd Ed. Wiley-Interscience, pp.115-117,568, 2000

    [23] J. Yang and D. Zhang, “Two-Dimensional PCA: A New Approach to Appearance-based Face representation and recognition”, IEEE Transaction on Pattern analysis and Machine Intelligence, vol.26, no.1 pp131-137 2004

    [24] J. Kovac, P. Peer, F. Solina, “Human skin color clustering for face detection”, Proc. IEEE Region 8 EUROCON 2003. Computer as a Tool, pp. 144-148, 2003

    [25] V. N. Vapnik, “An overview of statistical learning theory”, IEEE Transaction on Neural Networks, vol. 10, pp 988-999, 1999

    [26] R. O. Duda, P. E. Hart, D. G. Stork, “Pattern Classification”, 2nd ed. Wiley-Interscience, pp.259-265, 2000

    [27] T.-F. Wu, C. J. Lin and R. C. Weng, “Probability estimates for multi-class classification by pairwise coupling”, Journal of Machine Learning Research, vol.5, pp.975-1005, 2004

    [28] C.C. Chang and C. J. Lin, “LIBSVM: a Library for Support Vector Machines”, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001

    [29] M. B. Stegmann, “The AAM-API: An Open Source Active Appearance Model Implementation”, Proc. Medical Image Computing and Computer-Assisted Intervention, 951-952, 2003

    [30] William K. Pratt, “Digital Image Processing: PIKS Inside”, 3rd Ed, John Wiley & Sons, Inc., 2001

    [31] “M2VTS Project: MULTI-MODAL BIOMETRIC PERSON AUTHENTICATION”,http://www.tele.ucl.ac.be/PROJECTS/M2VTS/index.htm, 1998

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE