簡易檢索 / 詳目顯示

研究生: 戴夆池
Dai, Feng-Chih
論文名稱: 完備光滑賦距測度空間上的幾何結構與函數定理
A Note on Complete Smooth Metric Measure Spaces with Nonnegative Curvature
指導教授: 宋瓊珠
Sung, Chiung-Jue
口試委員: 高淑蓉
Kao, Shu-Jung
王嘉平
Wang, Jiaping
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 70
中文關鍵詞: 光滑賦距測度空間巴克里-埃默瑞里奇曲率加權拉普拉斯算子最低頻譜分裂定理加權調和函數梯度估計維度估計
外文關鍵詞: Smooth metric measure space, Bakry-Émery Ricci curvature, f-Laplacian, Bottom spectrum, Splitting theorem, f-Harmonic function, Gradient estimate, Dimension estimate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇文章中,我們研究有非負巴克里-埃默瑞里奇曲率的完備光滑賦距測度空間上加權拉普拉斯算子的函數定理及頻譜性質。主要的結果包含加權拉普拉斯算子的最低頻譜上界、光滑賦距測度空間的分裂定理、正加權調和函數的梯度估計以及多項式增長加權調和函數空間的維度估計。


    In this paper, we study some function theorems and spectrum properties of f-Laplacian on a complete smooth metric measure space (M, g, e^{-f} dv) with nonnegative Bakry-Émery Ricci curvature. The main results include the upper bound of the bottom spectrum of the f-Laplacian, the splitting theorem of the smooth metric measure space, a gradient estimate for positive f-harmonic function and dimension estimate of the space of polynomial growth f-harmonic functions.

    摘要 致謝 Abstract 1 Contents 2 1. Introduction 3 2. Preliminary 7 3. Volume Comparison Theorem 8 4. Rigidity 17 5. Gradient Estimate 31 6. Dimension Estimate 47 References 68

    [B-E] D. Bakry and M. Émery, Diffusions hypercontractives, Séminaire de Probabilités, XIX, 1983/84, 177–206, Lecture Notes in Math 1123, Springer, Berlin, 1985. MR0889476 (88j:60131)
    [Bri] K. Brighton, A Liouville-type theorem for smooth metric measure spaces, J. Geom. Anal. 23 (2013), no. 2, 562–570. MR3023849
    [Bus] P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230. MR0683635 (84e:58076)
    [Cao] H.-D. Cao, Recent progress on Ricci solitons, Adv. Lect. Math. 11 (2010), 1–38. MR2648937 (2011d:53061)
    [C-C-M] J. Cheeger, T. Colding and W. Minicozzi, Linear growth harmonic functions on complete manifolds with nonnegative Ricci curvature, Geom. Funct. Anal. 5 (1995), no. 6, 948–954. MR1361516 (96j:53038)
    [Che] B.-L. Chen, Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009), no. 2, 363–382. MR2520796 (2010h:53095)
    [C75] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), no. 3, 289–297. MR0378001 (51 14170)
    [C80] S. Y. Cheng, Liouville theorem for harmonic maps, Geometry of the Laplace operator, 147–151, Proc. Sympos. Pure Math 36, Amer. Math. Soc., Rhode Island, 1980. MR0573431 (81i:58021)
    [C-L] S. Y. Cheng and P. Li, Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helv. 56 (1981), no. 3, 327–338. MR0639355 (83b:58076)
    [C-L-N] B. Chow, P. Lu and L. Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics 77, Amer. Math. Soc., Rhode Island; Science Press, New York, 2006. MR2274812 (2008a:53068)
    [C-M98] T. Colding and W. Minicozzi, Weyl type bounds for harmonic functions, Invent. Math. 131 (1998), no. 2, 257–298. MR1608571 (99b:53052)
    [G] A. A. Grigor�yan, The heat equation on noncompact Riemannian manifolds, Math. USSR-Sb. 72 (1992), no. 1, 47–77. MR1098839 (92h:58189)
    [H-K] P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 10, 1211–1215. MR1336257 (96f:46062)
    [Ham] R. S. Hamilton, The formation of singularities in the Ricci flow, Surv. Differ. Geom. 2, 7–136, Int. Press, Cambridge, 1995. MR1375255 (97e:53075)
    [Hei] H.-J. Hein, Weighted Sobolev inequalities under lower Ricci curvature bounds, Proc. Amer. Math. Soc. 139 (2011), no. 8, 2943–2955. MR2801635 (2012d:53110)
    [L97] P. Li, Harmonic sections of polynomial growth, Math. Res. Lett. 4 (1997), no. 1, 35–44. MR1432808 (98i:53054)
    [L06] P. Li, Harmonic functions and applications to complete manifolds, lecture notes, available on math.uci.edu/pli. MR2369440 (2009a:53056)
    [L-T] P. Li, and L.-F. Tam, Linear growth harmonic functions on a complete manifold, J. Differential Geom. 29 (1989), no. 2, 421–425. MR0982183 (90a:58202)
    [L-W99a] P. Li and J. Wang, Counting massive sets and dimensions of harmonic functions, J. Differential Geom. 53 (1999), no. 2, 237–278. MR1802723 (2001k:53063)
    [L-W99b] P. Li and J. Wang, Mean value inequalities, Indiana Univ. Math. J. 48 (1999), no. 4, 1257–1283. MR1757075 (2001e:58032)
    [L-W01] P. Li and J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), no. 3, 501–534. MR1906784 (2003e:58046)
    [L-W02] P. Li and J. Wang, Complete manifolds with positive spectrum, II, J. Differential Geom. 62 (2002), no. 1, 143–162. MR1987380 (2004d:58045)
    [L-W06] P. Li and J. Wang, Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 921–982. MR2316978 (2008d:53053)
    [L-W09] P. Li and J. Wang, Connectedness at infinity of complete Kähler manifolds, Amer. J. Math. 131 (2009), no. 3, 771–817. MR2530854 (2010f:53126)
    [Li05] X.-D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. 84 (2005), no. 10, 1295–1361. MR2170766 (2006f:58046)
    [Lic] A. Lichnerowicz, Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A 271 (1970), 650–653. MR0268812 (42 3709)
    [M-W11] O. Munteanu and J. Wang, Smooth metric measure spaces with non-negative curvature, Comm. Anal. Geom. 19 (2011), no. 3, 451–486. MR2843238
    [M-W12] O. Munteanu and J. Wang, Analysis of weighted Laplacian and applications to Ricci solitons, Comm. Anal. Geom. 20 (2012), no. 1, 55–94. MR2903101
    [N] A. Naber, Some geometry and analysis on Ricci solitons, arXiv:math.DG/0612532.
    [S-C92] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27–38. MR1150597 (93d:58158)
    [S-C02] L. Saloff-Coste, Aspects of Sobolev-type inequalities, London Mathematical Society Lecture Note Series 289, Cambridge University Press, Cambridge, 2002. MR1872526 (2003c:46048)
    [S-Y] R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology 1, International Press, Cambridge, MA, 1994. MR1333601 (97d:53001)
    [W-W09] G. Wei and W. Wylie, Comparison geometry for the Bakry-Émery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377–405. MR2577473 (2011a:53064)
    [W] J.-Y.Wu, Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature II, Results Math. 63 (2013), no. 3-4, 1079–1094. MR3057356
    [W-W15] J.-Y. Wu and P. Wu, Heat kernel on smooth metric measure spaces with nonnegative curvature, Math. Ann. 362 (2015), no. 3-4, 717–742. MR3368080
    [Yan] N. Yang, A note on nonnegative Bakry-Émery Ricci curvature, Arch. Math. 93 (2009), no. 5, 491–496. MR2563596 (2011a:53058)
    [Yau75] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR0431040 (55 4042)

    QR CODE