研究生: |
李泱寰 Lee, Yang-Huan |
---|---|
論文名稱: |
厭氧菌Desulfovibrio gigas的三磷酸腺苷硫酸化酶的純化,特性以及初步的結晶學分析 Purification, Characterization, Preliminary x-ray diffraction analysis of ATP Sulfurylase from Desulfovibrio gigas. |
指導教授: |
陳俊榮
Chen, Chun-Jung |
口試委員: |
楊裕雄
翁秉霖 陳俊榮 劉明毅 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 三磷酸腺苷硫酸化酶 、異化硫酸鹽還原 、三磷酸腺苷硫酸化酶 |
外文關鍵詞: | ATP Sulfurylase, dissimilatory sulfate reduction, sulfate adenylyltransferase |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三磷酸腺苷硫酸化酶(ATP Sulfurylase , EC 2.7.7.4)在細胞中將三磷酸腺苷(Adenosine-5'-triphosphate)以及硫酸催化為焦磷酸根(PPi)以及adenosine 5'-phosphosulfate (APS),這個過程在細胞內硫酸還原作用中的同化(assimilatory)路徑以及異化(dissimilatory)路徑皆佔有重要的角色∘ 我們在厭氧菌Desulfovibrio gigas的週質中得到三磷酸腺苷硫酸化酶,以蛋白質N端定序以及液態層析質譜儀(LC/MS/MS)鑑定蛋白質,接著進行紫外線吸收光譜,同步輻射光源圓二色光譜(SRCD)分析三磷酸腺苷硫酸化酶的特性。並藉由懸滴蒸氣擴散法(hanging drop vapor diffusion method)得到三磷酸腺苷硫酸化酶的晶體,利用同步輻射進行X光繞射分析,解析度為2.8Å,Mattew’s coefficient為2.33(Å^3/Dalton),solvent content為47.21%,每單位asymmetric unit的分子數為1, initial linear R-factor為0.064。 使用Molecular replacment和Heavy atom method進行蛋白質的結構鑑定的實驗正在進行中,並希望藉由進一步實驗得知酵素的催化機制。
ATP Sulfurylase (ATPS) catalyzes ATP (Adenosine-5'-triphosphate) and sulfate into adenosine 5'-phosphosulfate (APS) and pyrophosphate (PPi), which plays an important role in both assimmilatory and dissimlatory sulfate reduction. ATPS was purifued from Desulfovibrio gigas periplasmic part. SDS-page, UV wavescan, N-terminal sequencing, Synchrotron Radiation Circular Dichroism (SRCD) are used to identify and characterized ATP Sulfurylase. The crystallization condition was found and optimized to produce the crystal of ATP Sulfurylase. Xray diffraction of ATPS crystal allows structural determination that provides a better understanding of the zine containing enzyme. By the unit-cell parameter, the calculated Mattew’s coeffcient and solvent content are 2.33 (Å^3/Dalton) and 47.21%, respectively. Furthermore, Mattew’s coeffcient suggested that the presense of a monomer in the asymmetric unit. The initial linear R-factor is 0.064. The structure determination using MR and heavy atom method are in progress to elucidate its function.
REFERENCES
[1] Chiang, Y.L., Heish, Y.C., Fang, J.Y., Liu, E.H., Huang, Y.C., Chuankhayan, P. et al. (2009) Crystal Structure of adenylysulfate reductase from Desulfovibrio gigas suggests a potential self-regulation mechamism involving the C terminal of the β-subunit. Journal of Bacteriology 191, 7597-7608
[2] Cypionka, H. (2000). Oxygen Respiration by Desulfovibrio species. Annu. Rev. Microbio 54, 827-848
[3] Ernst-Detlef Schulze and Harold A. Mooney (1993). Biodiversity and ecosystem function, Springer-Verlag, 88–90
[4] Fareleira, P., Santos, B.S., Antonio, C., Moradas-Ferreira, P., LeGall, J., Xavier, A.V., and Santos, H. (2003). Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiology 149, 1513–1522
[5] Gibson, G.R., Macfarlane, G.T., and Cummings, J.H. (1993). Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut 34,437-439
[6] Gravel, O.Y., Bursakov, S.A., Calvete, J.J., George, G.N., Moura, J.G., and Moura, I. (1998) ATP Sulfurylases from Sulfate-Reducing Bacteria of the Genus DesulfoVibrio. A Novel Metalloprotein Containing Cobalt and Zinc. Biochemistry 1998, 37, 16225-16232
[7] G.W.Skyring, P.A. Trudingera.(1972) Electrophoretic charaterization of ATP-sulfate adenylyltransferase (ATP-sulfurylase) using acrylamide gels. Analytical Biochemistry. 48, 259–265
[8] Hamilton, W.A. (1998). Bioenergetics of sulphate-reducing bacteria in relation to their enviromental impact. Biodegradation 9,201-212
[9] Haveman, S.A., Greene, E.A., Stilwell, C.P., Voordouw, J.K., and Voordouw, G. (2004). Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite. Journal of Bacteriology 186, 7944-7950.
[10] Hsieh, Y.C., Liu, M.Y., Wang, V.C.C., Chiang, Y.L., Liu, E.H., Wu, W.G., Chan, S.I. and Chen, C.J. (2010) Structural insights into the enzyme catalysis from comparison of three forms of dissimilatory sulphite reductase from Desulfovibrio gigas. Molecular Microbiology, 78, 1101-1116
[11] LeGall Jean. (1963). A new species of Desulfovibrio. Journal of Bacteriology 86, 1120.
[12] J. F. Heidelberg, R. Seshadri, S. A. Haveman et al. (2004). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnology 22, 554–559
[13] Kopriva, S., and Koprivova, A. (2004). Plant adenosine 5’-phosphosulphate reductase: the past, the present, and the future. Journal of Experimental Botany 55, 1775-1783.
[14] Leyh, T. S., Taylor, J. T., and Markham, G. H. (1987) The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization. J. Biol. Chem. 263, 2409-2416.
[15] Lunn, J.E., Droux, M., Martin, J., and Roland Douce. (1990) Localization of ATP Sulfurylase and O-acetylserine(thio)lyase in Spinach leaves. Plant Physiol. 94, 1345-1352
[16] Matias, P.M., Pereira, I.A., Soares, C.M., and Carronde, M.A. (2005). Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Progress in Biophysics and Molecular Biology 89, 292–329
[17] Meng Yu, Matrin, R.L., Jain, S., Chen, L.J., Segel, I.H. (1988). Rat liver ATP-sulfurylase: Purification, kinetic characterization, and interaction with arsenate, selenate, phosphate, and other inorganic oxyanions. Archives of Biochemistry and Biophysics 269, 156–174
[18] Meyer, B., and Kruver, J. (2007). Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5’-phosphosulfate reductase-encoding genes (aprBA) among sulfuroxidizing prokaryotes. Microbiology 153, 3478–3498
[19] Miles, A.J., Wallace, B.A. (2005) Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem Soc Rev. 35, 39-51.
[20] Odom, J.M., Peck, H.D.Jr. (1981). Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp.. FEMS Microbiol Lett 12, 47-50
[21] Osslund, T., Chandler, C., and Segel, I.H. (1982) ATP Sulfurylase from higher plants. Plant Physiol. 70, 39-45
[22] Peck, H.D.Jr., Deacon, T.E., and Davidson, .J.T. (1965). Studies on Adenosine 5’-Phosphosulfate Reductase fron Desulfovibrio desulfuricans and Thiobacillus Thioparus I. The assay and purification. Biochimica et biophysica acta 96, 429-446.
[23] Pires, R.H., Venceslau, S.S., Morais, F., Teixeira, M., Xavier, A.V., and Pereira, I.A. (2006) Chrarcterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex—a membrame-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45, 249-262
[24] Renosto, F., Martin, R.L., Borrell, J.L., Nelson, D.C., Segel, I.H. (1991) ATP sulfurylase from trophosome tissue of Riftia pachyptila (hydrothermal vent tube worm). Arch Biochem Biophys. 290, 66-78.
[25] Silva, G., LeGall, J., Xavier, A.V., Teixeira, M., and Pousada, C.R. (2001). J. Bacteriol. 183, 4413-4420
[26] Sperling, D., Kappler, U., Wynen, A., Dahl, C., and Truper, H.G. (1998) Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiology, 162, 257-264
[27] Ullrich, T.C., Blaesse, M., and Huber, R. (2001). Crystal structure of ATP Sulfurylase from Saccharomyces ceverisiae, a key enzyme in sulfate activation. EMBO, 20, 316-329