簡易檢索 / 詳目顯示

研究生: 陳星君
Chen, Shing-Jiun
論文名稱: 聚丙烯腈-奈米碳管/銅之多孔性薄膜:第三機制主控之電磁波屏蔽材料
Porous Thin Films of Polyacrylonitrile-Carbon Nanotubes/Copper Composites: The Third Mechanism Governed Shielding of Electromagnetic Radiation
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 黃淑娟
洪毓玨
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 54
中文關鍵詞: 電磁波屏蔽多孔薄膜
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電磁波屏蔽主要來自三個機制:一界面反射、二介電吸收和三材料內部多重散射。一般屏蔽材料著重於第一二機制。除非特別設計,電磁波屏蔽來自第三機制的貢獻是很小,可忽略。如要提升第三機制的貢獻,材料必須是多晶結構與具備一定的厚度。前者有利於電磁波於材料內部多重反射,後者可延長散射衰減。本論文嘗試打破傳統侷限,合成多孔性薄膜,並將奈米碳管及銅與硫化銅分別鍍佈於薄膜孔洞,以期得到具電磁波屏蔽能力之薄膜。實驗流程主要分為三個部分:一藉添加氯化鋰於聚丙烯腈以製備具高多孔性薄膜;二為加入碳管以吸收電磁波;三於摻有碳管的多孔性聚丙烯腈薄膜上,鍍銅與硫化銅來提高薄膜內部之多重反射。


    Shielding of electromagnetic radiation is normally contributed by impedance mismatched interface induced reflection and adsorption due to material polarization. Contribution by the third mechanism known arising from multi-scattering within medium however is small and negligible. This thesis intends to develop a novel technology of electromagnetic interference shielding based on thin films with high porosity and shielding is dominated by multi-scattering mechanism. Carbon nanotubes, copper and copper monosulfide are introduced into porous thin films made of lithium chloride and polyacrylonitrile and shielding experiments reveal an increase in shielding effectiveness dominated by multi-reflections.

    摘要 I Abstract II 總目錄 III 圖目錄 V 表目錄 VII 第一章、 文獻回顧 1 1-1 奈米碳管 1 1-1-1 奈米碳管基本結構 1 1-1-2 奈米碳管基本電性 3 1-2 電磁波屏蔽 5 1-2-1 電磁波屏蔽基本原理 5 1-2-2 電磁波屏蔽量測 11 1-2-3 電磁波屏蔽材料介紹 12 第二章、 實驗動機 13 第三章、 實驗方法 14 3-1 實驗藥品 14 3-1-1 主要藥品介紹 15 3-2 儀器設備 17 3-3 實驗流程 18 3-3-1 氯化鋰╱聚丙烯腈薄膜製備 19 3-3-2 單壁奈米碳管╱氯化鋰╱聚丙烯腈薄膜製備 20 3-3-3 敏化活化法化學鍍銅 21 3-3-4 化學法硫化銅沉積 23 3-3-5 試片分析 24 第四章、 結果與討論 25 4-1 顯微結構與能量散佈X-光光譜分析 25 4-1-1 不同氯化鋰含量之聚丙烯腈薄膜 25 4-1-2 不同濕度成膜之聚丙烯腈薄膜顯微結分析 31 4-1-3 單壁奈米碳管╱聚丙烯腈薄膜 33 4-1-4 鍍銅之聚丙烯腈薄膜 35 4-1-5 鍍銅與硫化銅之單壁奈米碳管╱聚丙烯腈薄膜 38 4-2 X光繞射分析 41 4-2-1 鍍附銅、硫化銅之聚丙烯腈薄膜X光繞射分析 41 4-3 聚丙烯腈薄膜之電磁波屏蔽效果量測 43 第五章、 結論 51 第六章、 參考文獻 52

    1. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature, 1991. 354(6348): p. 56-58.
    2. Dresselhaus, M.S. and P.C. Eklund, Phonons in carbon nanotubes. Advances in Physics, 2000. 49(6): p. 705-814.
    3. Thostenson, E.T., Z.F. Ren, and T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001. 61(13): p. 1899-1912.
    4. Hamada, N., S. Sawada, and A. Oshiyama, New One-Dimensional Conductors - Graphitic Microtubules. Physical Review Letters, 1992. 68(10): p. 1579-1581.
    5. Al-Saleh, M.H. and U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 2009. 47(7): p. 1738-1746.
    6. Geetha, S., et al., EMI Shielding: Methods and Materials-A Review. Journal of Applied Polymer Science, 2009. 112(4): p. 2073-2086.
    7. 林建中, 高分子材料性質與應用. 2nd ed. 2002, 臺北縣五股鄉: 高立. 508面.
    8. Rahaman, M.S.A., A.F. Ismail, and A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability, 2007. 92(8): p. 1421-1432.
    9. 方瑞華, 無電鍍銅膜之成核與成長研究. 2002, 新竹市: 國立清華大學.
    10. 安茂忠, 電鍍技術與應用. 1st ed. 2007, 北京: 機械工業出版社.
    11. Tsao, K.Y., et al., Effect of Weak Reductant on Properties of Electroless Copper Polyacrylonitrile Nanocomposites for Electromagnetic Interference Shielding. Journal of Applied Polymer Science, 2010. 118(2): p. 936-942.
    12. Lindroos, S., A. Arnold, and M. Leskela, Growth of CuS thin films by the successive ionic layer adsorption and reaction method. Applied Surface Science, 2000. 158(1-2): p. 75-80.
    13. Xu, C.Q., et al., Synthesis of copper sulfide nanowhisker via sonochemical way and its characterization. Chemistry Letters, 2003. 32(2): p. 198-199.
    14. 趙文元, 王亦軍, 功能高分子材料化學. 1996, 北京巿: 化學工業. 295 面.
    15. Yu, X.L., et al., Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O. Materials Letters, 2010. 64(22): p. 2407-2409.
    16. Aitkek, J., Breath Figures. Nature, 1911. 86.
    17. Rayleigh, Breath Figures. Nature, 1911. 86.
    18. Bunz, U.H.F., Breath figures as a dynamic templating method for polymers and nanomaterials. Advanced Materials, 2006. 18(8): p. 973-989.
    19. Widawski, G., M. Rawiso, and B. Francois, Self-Organized Honeycomb Morphology of Star-Polymer Polystyrene Films. Nature, 1994. 369(6479): p. 387-389.
    20. Srinivasarao, M., et al., Three-dimensionally ordered array of air bubbles in a polymer film. Science, 2001. 292(5514): p. 79-83.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE