研究生: |
郭昱成 Kuo, Yu Cheng |
---|---|
論文名稱: |
(HfNbSiTaZr)CxNy多元碳氮化物薄膜之結構與性質研究 Microstructure and Properties of Multi-element (HfNbSiTaZr)CxNy coatings |
指導教授: |
林樹均
Lin, Su Jien |
口試委員: |
張守一
Chang, Shou Yi 李勝隆 Lee, Sheng Long |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 高熵合金 、薄膜 |
外文關鍵詞: | High entropy alloy, Thin film |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以反應式射頻磁控濺鍍法製備HfNbSiTaZr多元碳氮化物薄膜,探討不同甲烷與氮氣流率以及施加不同基板偏壓後對薄膜微結構、機械性質及磨耗性質的影響。實驗結果顯示在未施加基板偏壓下,多元碳氮化物薄膜均呈現FCC固溶結構,在碳含量約為 37.3 at%,氮含量約為 18.0 at%的薄膜中,有較高的硬度27.3 GPa且較低的摩擦係數0.39。以此成分的薄膜為基礎,施加基板偏壓後,薄膜仍維持FCC固溶結構,結構變得更緻密;硬度雖沒有提升,但在球對盤磨耗試驗中,摩擦係數降至0.15,磨耗速率降至0.2 × 106 mm3/Nm。大氣退火方面,薄膜施加偏壓 50 V且在退火溫度 500 C時,氧化層厚度最薄約 226 nm。由此可見,與歷屆學長姐的碳氮化物薄膜相比,在摩擦係數與磨耗速率有較好的表現。
Multi-element carbon nitride films based on high-entropy alloys have received lots of attention. In this study, multielement (HfNbSiTaZr) carbon nitride films were designed and deposited at 400 ℃on Si wafers by RF reactive magnetron sputtering in the gaseous mixture Ar + N2 + CH4. By changing nitrogen flow ratio, methane flow ratio and substrate bias, crystal structure, microstructure, hardness and oxidation resistance have been investigated.
The results of crystal structure indicate that films with substrate bias or without substrate bias all exhibit FCC structure. Besides, the films with the increasing substrate bias contain denser microstructure but decreasing hardness. In ball-on-disc wearing test, the coatings increasing substrate bias show lower friction coefficient 0.15 and lower wearing rate 0.2 × 106 mm3/Nm. In addition, the film of 50 V substrate bias has good oxidation resistance. After the air annealing at 500 C for 2 h, the oxide layer is just 226 nm on the surface of the coating.
The research illustrates the excellent potential of multi-element (HfNbSiTaZr) carbon nitride coating for industrial applications.
[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Advanced Engineering Materials 6(5) (2004) 299.
[2] 葉均蔚、陳瑞凱,“高熵合金”,科學發展 377 (2004) 16.
[3] 蔡銘洪,“多元高熵合金薄膜微結構及電性演變之研究”,國立清華大學材料科學工程研究所碩士論文 (2003).
[4] G. Zhang, B. Li, B. Jiang, F. Yan, and D. Chen, "Microstructure and tribological properties of TiN, TiC and Ti(C, N) thin films prepared by closed-field unbalanced magnetron sputtering ion plating," Applied Surface Science, vol. 255, pp. 8788-8793, 8/15/ 2009.
[5] 劉庭瑋,“多元碳化物薄膜及多元碳氮化物薄膜之結構與性質研究”,國立清華大學材料科學工程研究所碩士論文 (2009).
[6] 林季薇,“多元碳化物 (CrNbSiTiZr)Cx 鍍膜之結構與性質研究”,國立清華大學材料科學工程研究所碩士論文 (2010).
[7] 黃志維,“不同甲烷流率對反應式濺鍍 (CrNbSiTiZr)Cx 鍍膜結構與性質之影響”,國立清華大學材料科學工程研究所碩士論文 (2011).
[8] 陳思寰,“ (CrNbTaTiZr)Cx 薄膜的機械性質與微結構之研究”,國立清華大學材料科學工程研究所碩士論文 (2012).
[9] 許凱閔,“(HfNbSiTaZr)CXNy 多元碳氮化物薄膜之結構與性質研究” ,國立清華大學材料科學工程研究所碩士論文 (2015)
[10] T. Zehnder, J. Matthey, P. Schwaller, A. Klein, P.-A. Steinmann, and J. Patscheider, "Wear protective coatings consisting of TiC–SiC–aC: H deposited by magnetron sputtering," Surface and Coatings Technology, vol. 163, pp. 238-244, 2003.
[11] D. Martínez-Martínez, C. López-Cartes, A. Fernández, and J. Sánchez-López, "Influence of the microstructure on the mechanical and tribological behavior of TiC/aC nanocomposite coatings," Thin Solid Films, vol. 517, pp. 1662-1671, 2009.
[12] J. Musil and J. Vlček, "Magnetron sputtering of hard nanocomposite coatings and their properties," Surface and Coatings Technology, vol. 142, pp. 557-566, 2001.
[13] S. PalDey and S. Deevi, "Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review," Materials Science and Engineering: A, vol. 342, pp. 58-79, 2003.
[14] R. Wuhrer and W. Yeung, "A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings," Scripta materialia, vol. 50, pp. 1461-1466, 2004.
[15] D. Monaghan, D. Teer, K. Laing, I. Efeoglu, and R. Arnell, "Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering," Surface and coatings technology, vol. 59, pp. 21-25, 1993.
[16] J. Musil, P. Zeman, H. Hrubý, and P. Mayrhofer, "ZrN/Cu nanocomposite film—a novel superhard material," Surface and Coatings Technology, vol. 120, pp. 179-183, 1999.
[17] M. Shinn, L. Hultman, and S. Barnett, "Growth, structure, and microhardness of epitaxial TiN/NbN superlattices," Journal of materials research, vol. 7, pp. 901-911, 1992.
[18] D.-J. Kim, Y.-R. Cho, M.-J. Lee, J.-M. Hong, Y.-K. Kim, and K.-H. Lee, "Properties of TiN–TiC multilayer coatings using plasma-assisted chemical vapor deposition," Surface and Coatings Technology, vol. 116, pp. 906-910, 1999.
[19] J. Vacı́k, J. Červená, V. Hnatowicz, S. Pošta, D. Fink, R. Klett, et al., "Simple technique for characterization of ion-modified polymeric foils," Surface and Coatings Technology, vol. 123, pp. 97-100, 2000.
[20] C.-L. Chang, J.-H. Chen, P.-C. Tsai, W.-Y. Ho, and D.-Y. Wang, "Synthesis and characterization of nano-composite Ti–Si–N hard coating by filtered cathodic arc deposition," Surface and Coatings Technology, vol. 203, pp. 619-623, 2008.
[21] S. Vepřek, S. Reiprich, and L. Shizhi, "Superhard nanocrystalline composite materials: the TiN/Si3N4 system," Applied physics letters, vol. 66, pp. 2640-2642, 1995.
[22] H. Holleck, C. Kühl, and H. Schulz, "Wear resistant carbide–boride composite coatings," Journal of Vacuum Science & Technology A, vol. 3, pp. 2345-2347, 1985.
[23] J. Musil, P. Karvankova, and J. Kasl, "Hard and superhard Zr–Ni–N nanocomposite films," Surface and Coatings Technology, vol. 139, pp. 101-109, 2001.
[24] J. Wheeler, R. Raghavan, V. Chawla, M. Morstein, and J. Michler, "Deformation of Hard Coatings at Elevated Temperatures," Surface and Coatings Technology, vol. 254, pp. 382-387, 2014.
[25] A. Hörling, L. Hultman, M. Odén, J. Sjölén, and L. Karlsson, "Mechanical properties and machining performance of Ti 1− x Al x N-coated cutting tools," Surface and Coatings Technology, vol. 191, pp. 384-392, 2005.
[26] M. Lindquist, O. Wilhelmsson, U. Jansson, and U. Wiklund, "Tribofilm formation from TiC and nanocomposite TiAlC coatings, studied with focused ion beam and transmission electron microscopy," Wear, vol. 266, pp. 988-994, 2009.
[27] O. Wilhelmsson, M. Råsander, M. Carlsson, E. Lewin, B. Sanyal, U. Wiklund, et al., "Design of Nanocomposite Low‐Friction Coatings," Advanced Functional Materials, vol. 17, pp. 1611-1616, 2007.
[28] M. Lindquist, O. Wilhelmsson, U. Jansson, and U. Wiklund, "Tribofilm formation and tribological properties of TiC and nanocomposite TiAlC coatings," Wear, vol. 266, pp. 379-387, 2009.
[29] V. Braic, A. Vladescu, M. Balaceanu, C. Luculescu, and M. Braic, "Nanostructured multi-element (TiZrNbHfTa) N and (TiZrNbHfTa) C hard coatings," Surface and Coatings Technology, vol. 211, pp. 117-121, 2012.
[30] 辜文柏, "(AlCrTaTiZr)(CN) 薄膜結構及性質之研究," 清華大學材料科學工程學系學位論文, 2008.
[31] R. K. Waits, "Planar magnetron sputtering," Journal of Vacuum Science & Technology, vol. 15, pp. 179-187, 1978.
[32] 賴加瀚, "Al-Cr-Ta-Ti-Zr-N 多元氮化物薄膜之製備與性質研究," 2007.
[33] R. Mason and M. Pichilingi, "Sputtering in a glow discharge ion source-pressure dependence: theory and experiment," Journal of Physics D: Applied Physics, vol. 27, p. 2363, 1994.
[34] F. R. De Boer, W. Mattens, R. Boom, A. Miedema, and A. Niessen, Cohesion in metals, 1988.
[35] 蔡佳凌, "反應式直流磁控濺鍍法製備 (Al, Cr, Nb, Si, B, C) 100-xNx 高熵薄膜之研究," 清華大學材料科學工程學系學位論文, 2014.
[36] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of materials research, vol. 7, pp. 1564-1583, 1992.
[37] M. E. Schlesinger, "The Si-Ta (silicon-tantalum) system," Journal of phase equilibria, vol. 15, pp. 90-95, 1994.
[38] A. Voevodin and J. Zabinski, "Load-adaptive crystalline–amorphous nanocomposites," Journal of materials Science, vol. 33, pp. 319-327, 1998.
[39] J. Lin, J. Moore, B. Mishra, M. Pinkas, and W. Sproul, "Syntheses and characterization of TiC/a: C composite coatings using pulsed closed field unbalanced magnetron sputtering (P-CFUBMS)," Thin Solid Films, vol. 517, pp. 1131-1135, 2008.
[40] C.-H. Lai, S.-J. Lin, J.-W. Yeh, and A. Davison, "Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr) N coatings," Journal of Physics D: Applied Physics, vol. 39, p. 4628, 2006.
[41] D. Mattox, "Particle bombardment effects on thin‐film deposition: A review," Journal of Vacuum Science & Technology A, vol. 7, pp. 1105-1114, 1989.
[42] F. Vaz, L. Rebouta, S. Ramos, M. da Silva, and J. Soares, "Physical, structural and mechanical characterization of Ti1− xSix Ny films," Surface and Coatings Technology, vol. 108, pp. 236-240, 1998.