研究生: |
呂榮達 Jung-Ta Lu |
---|---|
論文名稱: |
經PEGyltion修飾後的抗WSSV VP28單株抗體在蝦子體內存留時間的探討 The in vivo duration of monoclonal anti-WSSV VP28 antibody within shrimp body after PEGylatoin |
指導教授: |
黎耀基
Yiu-Kay Lai 陳啟銘 Chi-Min Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 白點病毒 、中和抗體 、PEGylation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白點病毒(White Spot Syndrome Virus)具有廣泛宿主的特性,除了是造成養殖蝦類高死亡率的白點病的病因,對於其他種類的水生甲殼類亦導致高死亡率的肇因。截至目前為止,仍無有效防治白點病的方法,如何解決白點病造成的損害成乃為各國水產研究單位刻不容緩的課題。WSSV的套膜蛋白質VP28 (envelop protein VP28)在感染蝦子的過程中扮演重要的角色,目前發現抗VP28的抗體具有中和或延遲WSSV感染蝦子的功效。因此本研究發展利用以注射及餵食的方式,將外來的中和病毒的抗體到蝦子體內,以補足蝦子免疫系統的不足。雖然一般均認為蝦子的免疫系統不具有如脊椎動物般的cell-mediated adaptive immunity system;但是為開發使用抗VP28抗體中和WSSV的實際應用,即施用抗VP28的抗體並維持其在蝦子體內維持的穩定濃度來防治WSSV的感染。由於PEGyaltion後的蛋白質在高等生物體內能延遲代謝的速度,相對地更具療效。於是本研究利用PEGyaltion對蛋白質的修飾以達到目的,本研究將具有特異性的抗VP28的單株抗體(□VP28)經過PEGyaltion後,以注射與口服的方式施用於蝦子以評估被動免疫療法(passive immunity therapy)應用在蝦子的可能性。比較直接注射經PEGyaltion修飾的□VP28與未經過修飾的□VP28的作用,顯示PEGyaltion的確能延長□VP28在蝦子體內存留約長兩倍的時間;除此之外,本研究亦是首次證實經PEGyaltion修飾後的單株抗體在無脊椎動物體內延長其生物功能(biological function)。至於餵食的試驗方面,則不論PEGyaltion修飾或未經修飾的□VP28都無法通過消化道的考驗進入到循環系統。綜合而言,本研究顯示將PEGyaltion修飾後的□VP28注射到蝦子體內為具有開發潛力的防治白點病新穎方法。
Besides high mortal rate to cultured shrimp, White Spot Syndrome Virus (WSSV) also causes high mortality to other species of aquatic crustacean. As a result, there is an urgent need to find the solutions for epidemic of WSSV. From previous studies demonstrate that VP28, an envelop protein of WSSV, is critical for WSSV infection; and the infection of WSSV could be neutralized or attenuated through the existence of anti-VP28 antibodies within shrimp body. However, the concentration of anti-VP28 antibodies within shrimp must have to maintain a stable and efficacious level for inhibition of WSSV infection. Actually, PEGylated protein can sustain more stable concentration within the body of vertebrate organism and appeared to be more efficacious of its biological functions. The specific aims of this study is tried to maintain the concentration and duration of anti-VP28 antibodies within shrimp body through PEGylation modification. After PEGyaltion of anti-VP28 antibodies (□VP28), antibodies were introduced into shrimp bodies through either intramuscular injection or oral feeding. From the results, PEGylaton provided □VP28 twice times of duration, as comparing to non-PEGylated. In fact, this result is the first report that monoclonal antibodies could extend the duration within the body of invertebrate organism through PEGylation modification. As oral feeding, neither PEGylated nor non-PEGylated □VP28 could not survive from the GI track. Overall, the □VP28 might be a practical treatment for inhibition of WSSV infection after PEGylation.
Anderson DP. (1992): Immunostimulant, adjuvants and vaccine carriers in fish:
application to aquaculture. Annual. Rev. Fish Disease. 281-307.
Burton DR, Williamson RA, and Parren PW. (2000): Antibody and virus: binding
and neutralization. Virology 270, 1-3
Burton DR. (2002): Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706-713
Chang CF., Su MS., Chen HY., Lo CF., Kou GH., and Liao IC. (1999): Effect of
dietary beta-1,3-glucan on resistance to white spot syndrome virus (WSSV) in
postlarval and juvenile Penaeus monodon. Dis Aquat Organ 36, 163–8.
Cleland JL., Daugherty A., and Mrsny R. (2001): Emerging protein delivery
methods. Curr. Opin. Biotechnol. 12, 212–219.
Chang C. F., Su M. S., Chen H. Y., and Liao I. C. (2003): Dietary beta-1,3-glucan
effectively improves immunity and survival of Penaeus monodon challenged with
white spot syndrome virus. Fish Shellfish Immunol. 15, 297-310.
Calceti P, Salmaso S, Walker G, Bernkop-Schurch A. (2004): Development and in
vivo evaluation of an oral insulin-PEG delivery system. Eur. J. Pharm. Sci. 22,
Citarasu T, Sivaram V, Immanuel G, Rout N, and Murugan V. (2006): Influence of
selected Indian immunostimulant herbs against white spot syndrome virus (WSSV)
infection in black tiger shrimp, Penaeus monodon with reference to haematological,
biochemical and immunological changes. Fish Shellfish Immunol. [Epub ahead of
Durand, S., Lightner, D. V., Redman, R. M., and Bonami, J. R. (1997).
Ultrastructure and morphogenesis of White Spot Syndrome Baculovirus (WSSV).
Destoumieux D, Munoz M, Cosseau C, Roderiguez J, Bulet P, Comps M, and
Bachere E. (2000): Penaeidins, antimicrobial peptides with chitinbinding activity,
are produced and stored in shrimp granulocytes and released after microbial
challenge. J Cell Sci. 113,461-469.
Drews J. (2003): Strategic trends in drug industry. Drug Discovery Today 8,
411–420.
Francki, R. I. B., Fauquet, C. M., Knudson, D. L., and Brown, F. (1991).
“Classification and Nomenclature of Viruses: Fifth Report of the International
Committee on Taxonomy of Viruses.” Springer-Verlag, New York.
Flegel TW. (1997): Major viral diseases of the black tiger prawn (Penaeus monodon)
in Thailand. World J. Microbiol. Biotechnol. 13, 433-442.
Frokjaer S. and Otzen DE (2005): Protein drug stability: a formulation challenge.
Nat. Rev. Drug Discov. 4, 298-306
Huang C., Zhang X., Lin Q., Xu X., Hu Z. and Hew C. L. (2002): Proteomic
analysis of shrimp white spot syndrome viral proteins and characterization of a
novel envelope protein VP466. Mol Cell Proteomics. 1, 223-231.
Harris JM, and Chess RB. (2003) Effect of pegylation on pharmaceuticals. Nat. Rev.
Drug Discov. 2, 214-221.
Huang R., Xie Y., Zhang J., and Shi Z. (2005): A novel envelope protein involved in
White spot syndrome virus infection. J Gen Virol 86, 1357-1361.
van Hulten MC, Westenberg M, Goodall ST and Vlak JM. (2000): Identification of
two major virion protein genes of white spot syndrome virus of shrimp. Virology 266,
227-236.
van Hulten MC, Witteveldt J, Snippe M and Vlak JM. (2001): White spot syndrome
virus envelope protein VP28 is involved in the systemic infection of shrimp.
Virology 285, 228-233.
van Hulten MC, Reijns M, Vermeesch AM and Zandbergen F. (2002): Identification
of VP19 and VP15 of white spot syndrome virus (WSSV) and glycosylation status
of the WSSV major structural proteins. J. Gen. Virol. 83, 257-265.
Jory DE.and Dixon HM. (1999): Shrimp white spot virus in the Western
Hemisphere. Aquac. Mag. 25, 83– 91.
Jha R. K., Xu Z. R., Shen J., Bai S. J., Sun J. Y., and Li W.F. (2006): The efficacy of
recombinant vaccines against white spot syndrome virus in Procambarus clarkii.
Immunol. Lett. 105, 68-76.
Kou GH, Chen SN, and Huang SL. (1989): Studies on bacterial infection and
vaccination trials for culture Penaeus monodon in Taiwan.Abstract of the Fourth
EAFP International Conference on Diseases of Fish and Shellfish 24-28 September 1989, Santiago de Compostella, Spain; 1989. 94 pp.
Kubetzko S., Sarkar CA., and Pluckthun A. (2005): Protein PEGylation decreases
observed target association rates via a dual blocking mechanism. Mol. Pharmacol.
68, 1439-1454.
Lightner DV. (1996): A Handbook of Pathology and Diagnostic Procedures for
Diseases of Penaeid Shrimp.World Aquaculture Society, Baton Rouge, LA
Lee SY., and Söderhäll K. (2002): Early events in crustacean innate immunity. Fish
Shellfish Immunol. 12, 421-437.
Li L. J., Yuan J. F., Cai C. A., Gu W. G., Shi Z. L. (2006): Multiple envelope
proteins are involved in white spot syndrome virus (WSSV) infection in crayfish.
Arch Virol. [Epub ahead of print]
Lan Y., Xu X., Yang F., and Zhang X. (2006): Transcriptional profile of shrimp
white spot syndrome virus (WSSV) genes with DNA microarray. Arch. Virol. [Epub
ahead of print]
Maack T. (1992): Renal handling of proteins and polypeptides. Handbook of
Physiology, Section 8, Renal Physiology (Windhager EE ed) pp 2039-2082,
Washington, D. C.
Muller, K., C. A. Tidona, U. Bahr, and G. Darai. (1998): Identification of a
thymidylate synthase gene within the genome of Chilo iridescent virus. Virus Genes
17, 243–258.
Mushiake, K., Shimizu, K., Satoh, J., Mori, K., Arimoto, M., Ohsumi, S., Imaizumi,
K., 1999. Control of penaeid acute viremia (PAV) in Penaeus japonicus: selection of
eggs based on the PCR detection of the causative virus (PRDV) from receptaculum
seminis of spawned brood stock. Fish Pathol. 34, 203– 207.
Nakano H., Koube H., Umezawa S., Momoyama K., Hiraok, M. Inouye K. and
Oseko, N. (1994): Mass mortalities of cultured kuruma shrimp, Penaeus japonicus
in Japan in 1993: Epizootiological survey and infection trials. Gyobo Kenkyu (Fish
Pathology) 29, 135-139 (in Japanese with English abstract).
Nemerow GR. (2000): Cell receptors involved in adenovirus entry. Virology 274,
1-4.
Namikoshi A., Wu J. L., Yamashita T., Nishizawa T., Nishioka T., Arimoto M.,Muroga K. (2004): Vaccination trials with Penaeus japonicus to induce resistance to
white spot syndrome virus. Aquaculture 229, 25-35.
Rameshangam P, Ramasamy P. (2005): Protein expression in white spot syndrome
virus infected Penaeus monodon fabricius. Virus Res. 110, 133-141.
Robalino J, Payne C, Parnell P, Shepard E, Grimes AC, Metz A, Prior S, Witteveldt J,
Vlak JM, Gross PS, Warr G and Browdy CL. (2005): Inactivation of white spot
syndrome virus (WSSV) by normal rabbitserum: implication for the role of the
envelope protein VP28 in WSSV infection of shrimp. Virus Res.( in press)
Sahul Hameed AS, Anikumar M, Raj Stephen ML. (1998): Studies on the
pathogenicity of systemic ectodermal and mesodermal baculovirus and its detection
in shrimp by immunological methods. Aquaculture 160, 31-45.
Schofield DJ., Glamann J., Emerson U., and Purchell RH. (2000): Identification by
phage display and characterization of two neutralizing chimpanzee monoclonal
antibodies to the hepatitis E virus capsid protein. J. Virol. 74, 5548-5555.
Soto, M.A., Lotz, J.M., 2001. Epidemiological parameters of white spot syndrome
virus infections in Litopenaeus vannamei and L. setiferus. J. Invertebr. Pathol. 78,
9–15.
Tsai J. M., Wang H. C., Hsiao H. H., Wang A. H., Kou G. H., Lo C.F. (2004):
Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white
spot syndrome virus. J. Virol. 78, 11360-11370.
Tsai J. M., Wang H. C., Wang A. H., Zhuanh Y., Walker PJ., Kou G. H., Lo C. F.
(2006): Identification of the Nucleocapsid, Tegument, and Envelope Proteinsof the
Shrimp White Spot Syndrome Virus Virion. J. Virol. 80, 3021-3029.
Wongteerasupaya, C., Vickers, J. E., Sriurairatana, S., Nash, G. L., Akarajamorn, A.,
Boonsaeng, V., Panyim, S., Tassanakajon, A., Withyachumnarnkul, B., and Flegel,
T. W. (1995). A non-occluded, systemic baculovirus that occurs in cells of
ectodermal and mesodermal origin and causes high mortality in the black tiger
prawn Penaeus monodon. Dis. Aquat. Org. 21, 69-77.
Wu, J.L., Namikoshi, A., Nishizawa, T., Mushiake, K., Teruya, K., Muroga, K.,2001. Effects of shrimp density on transmission of penaeid acute viremia in Penaeus
japonicus by cannibalism and the waterborne route. Dis.Aquat. Org. 47, 129–135.
Witteveldt J, Cifuentes CC, Vlak JM and van Hulten MC. (2004): Protection of
Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine.
Fish Shellfish Immunol. 16, 571-579.
Witteveldt J, Cifuentes CC, Vlak JM and van Hulten MC. (2004): Protection of
Penaeus monodon against white spot syndrome virus by oral vaccination. J. Virol.
78, 2057-2061.
Wu W., Wang L. and Zhang X. (2005): Identification of white spot syndrome virus
(WSSV) envelope proteins involved in shrimp infection. Virology 332, 578-583
Volkman LE and Goldsmith PA. (1985): Mechanism of Neutralization of Budded
Autographa californica Nuclear Polyhedrosis Virus by a Monoclonal Antibody:
Inhibition of Entry by Adsorptive Endocytosis. Virology 143, 185-195.
Veronese FM., Monfardini C., Caliceti P., Schiavon O., Scrawen MD., Beer D.
(1996): Improvment of pharmacokinetic, immunological and stability properties of
asparaginase by conjugation to linear and branched monomethoxypoly(ethylene
glycol). J. Control. Release. 40, 199–209.
Yang F., He J., Lin X., Li Q., Pan D., Zhang X., Xu X. (2001): Complete Genome
Sequence of the Shrimp White Spot Bacilliform Virus. J. Virol. 75, 11811-11820.
Yi G., Wang Z., Qi Y., Yao L., Qian J., and Hu L. (2004): Vp28 of shrimp white
spot syndrome virus is involved in the attachment and penetration into shrimp cells.
J. biochem. Mol. Biol. 37, 726-734.
Yoganandhan K, Musthaq SS, Narayanan RB and Sahul Hameed AS. (2004):
Production of polyclonal antiserum against recombinant VP28 protein and its
application for the detection of white spot syndrome virus in crustaceans. J. Fish Dis.
27, 517-522.
Zaplinsky S. and Lee C. (1992): In Polyethylene Glycol Chemistry: Biotechnical
and Biomedical Applications (ed Harris, J. M.) 347–370 (Plenum Press, NewYork,).