簡易檢索 / 詳目顯示

研究生: 侯順淵
Hou, Shun-Yuan
論文名稱: 奈米銀粒子/氧化鋅奈米柱複合材料之製備方法與其光學特性探討
Optical properties of silver nanoparticles with zinc oxide hybrid nanostructure produced by electric current heating process
指導教授: 湯茂竹
Tang, Mau-Tsu
李志浩
Lee, Chih-Hao
口試委員: 曾紹欽
Tseng, Shao-Chin
林碧軒
Lin, Bi-Hsuan
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 66
中文關鍵詞: 表面電漿共振同步輻射銀奈米粒子氧化鋅奈米柱光致發光
外文關鍵詞: Localized surface plasmon resonance, Synchrotron radiation, Silver nanoparticle, ZnO nanorods, Photoluminescence
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅(ZnO)的特殊光學特性,使其成為紫外光半導體光源或感測器的重要材料,如何調整其發光特性更是重要的研究課題之一。科學家已經發現當氧化鋅與電漿子金屬奈米粒子產生連結時,會大幅地改變其自身的光學表現,本論文將探討奈米銀粒子/氧化鋅奈米柱複合材料新的製程架構,發展兩種不同的製程方法,第一種是利用微小結構或原子分子間凡德瓦力的吸附,讓10 ppm銀奈米粒子溶液滴附在氧化鋅上達成連結,另一種方法則是先在氧化鋅奈米柱上濺鍍一層銀薄膜,並於矽基板上通入電流5安培,此舉會燒熔氧化鋅上的銀膜,使得銀膜因為固態去濕(Solid state dewetting)效應而在表面產生島膜與奈米粒子的附著。
    分別對這兩種合成方式製作出的複合材料,量測其光致發光光譜(Photoluminescence, PL),量測結果發現在近帶邊緣(near band edge, NBE)的激發光波段,使用凡德瓦力吸附製程的複合材料,隨著滴附時間的增加,強度呈現下降趨勢,而利用電流燒熔製程的複合材料,在特定的銀薄膜厚度下進行燒熔後會產生大幅的近帶邊緣激發光強度的提升。本論文也花了很大的篇幅於電流燒熔製程的參數調控,在一連串的實驗測試,最終成功使此製程能夠簡單快速的產生奈米複合材料,並能穩定提升氧化鋅的本質激發光強度,最多有2.8倍的強度增幅。
    由於電流燒熔製程的樣品有較好的激發光強度增幅,我們針對材料進行了材料特性的分析,使用同步輻射中心台灣光子源23A奈米探測(X-ray Nanoprobe)光束線的X光技術,來檢測複合材料在不同製程條件下的化學狀態,此外也使用清大工科系的X光繞射儀檢測在製程過程中複合材料晶向的穩定度,也於清大醫工系進行UV-Vis光譜量測,則是觀察銀奈米粒子所貢獻的異常吸收波段,說明銀奈米粒子會造成表面電漿共振的效應,證實所嘗試的製程架構可以成功製造氧化鋅/銀奈米複合物並有效地提高其激發光強度。


    The optical properties of zinc oxide have made it an important material for ultraviolet semiconductor light sources. Adjusting its luminous properties is one of the important issues. It has been found that when zinc oxide is connected with plasmonic nano particles, it would change its optical performance. In order to discuss the changing behavior under different connection conditions, this thesis mainly proposes new process architecture for ZnO/Ag hybrid-structure. There are two new process methods, one is to use the adsorption of van der Waals between the 10 ppm silver nanoparticle solution to be achieved the connection. The other is to sputter a layer of silver film on zinc oxide and under the current of 5A. It would make the silver film to adhere to nano particles on the surface due to the solid state dewetting effect.
    Use these two way to form the sample and do the photoluminescence analysis. The sample used the method_1 to make show the PL result keep decay with the attached time increased. Method_2 sintered the sample with a current, the intensity of the near-band edge light is greatly increased.
    Finally, because the method_2 sample has the phenomenon of increasing the light intensity. The material characteristics were also analyzed with the X-ray technology. X-ray absorption spectrum is for the chemical state. XEOL spectrum is for the deep luminous properties of the material. X-ray diffraction is for the stability of the crystal orientation. The material is finally analyzed by UV-Vis spectroscopy. The results showed obvious abnormal absorption bands. It was successfully confirmed that the proposed process architecture to manufacture of zinc oxide / silver nano composites.

    Abstract i 摘要 ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1-1.前言與研究動機 1 1-2.同步輻射光源 2 1-3.論文簡介 4 第二章 基本原理及文獻回顧 5 2-1.氧化鋅 5 2-1.1.基本性質與應用 5 2-1.2.光學特性 6 2-1.3.奈米結構的製程及特性 7 2-2.表面電漿共振 8 2-2.1.表面電漿原理 8 2-2.2.侷域性表面電漿共振 8 2-3.氧化鋅/銀奈米複合材料 10 2-3.1.合成方式與特性變化 10 2-3.2.異質接面能帶機制 12 第三章 實驗方法 13 3-1.實驗大綱 13 3-2.實驗製備 14 3-2.1.氧化鋅奈米柱製作 14 3-2.2.銀奈米粒子溶液製備 16 3-2.3.銀薄膜濺鍍製備 16 3-2.4.氧化鋅/銀奈米複合物的製備 17 3-2.4.1.銀奈米粒子凡德瓦力吸附實驗 17 3-2.4.2.固態去濕-電流燒熔實驗 19 3-3.測量技術 22 3-3.1.掃描式電子顯微鏡 22 3-3.2.光致發光螢光光譜 22 3-3.3.X光受激致冷發光光譜 23 3-3.4.X光吸收光譜 23 3-3.5.X光繞射 25 3-3.6.紫外-可見光光譜 25 3-3.7.有限時域差分法 26 第四章 結果與討論 27 4-1.凡德瓦力吸附-氧化鋅/銀奈米複合材料 27 4-1.1.發光特性量測 27 4-2.樣品調製對於氧化鋅激發光之結果探討 30 4-2.1.樣品基板特性差異比較 31 4-2.2.氧化鋅奈米柱生長參數比較 33 4-2.3.銀薄膜與電燒製程溫度之關係探討 35 4-3.電流燒熔-氧化鋅/銀奈米複合材料 39 4-3.1.樣品形貌分析 39 4-3.2.發光特性量測 42 4-3.2.1.銀粒子大小差異於氧化鋅激發光之影響 42 4-3.2.2.銀粒子製程條件與激發光增幅結果比較 44 4-3.2.3.影響氧化鋅激發光強度增幅之結果分析 50 4-3.2.4.電燒加熱對於氧化鋅激發光影響 56 4-3.3.X光材料分析 57 4-3.4.UV-Vis光譜 59 4-3.5.理論計算驗證 62 第五章 結論 63 參考文獻 64

    1. 同步加速器光源─ 科學研究的神燈. 2013, 科學發展.
    2. 國家同步輻射研究中心-同步光源加速器簡介https://www.nsrrc.org.tw/chinese/lightsource.aspx.
    3. 同步輻射研究中心, 105期簡訊-台灣光子源TPS 23A試車成果與設施功能概要. 2018.
    4. Vaseem, M., A. Umar, and Y.-B. Hahn, ZnO nanoparticles: growth, properties, and applications. Metal oxide nanostructures and their applications, 2010. 5(1).
    5. 劉益春, et al., 氧化鋅可見區發光機制. 發光學報, 2002(6): p. 6.
    6. Xu, S. and Z.L. Wang, One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Research, 2011. 4(11): p. 1013-1098.
    7. 邱國斌, 蔡., 金屬表面電漿簡介. 物理雙月刊, 2006. 廿八卷,二期.
    8. Kelly, K.L., et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. 2003, ACS Publications.
    9. Kottmann, J., et al., Non‐regularly shaped plasmon resonant nanoparticle as localized light source for near‐field microscopy. Journal of microscopy, 2001. 202(1): p. 60-65.
    10. Chen, T., et al., Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles. Nanotechnology, 2008. 19(43): p. 435711.
    11. Guidelli, E.J., O. Baffa, and D.R. Clarke, Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence. Sci Rep, 2015. 5: p. 14004.
    12. Huo, C., et al., Tunable photoluminescence effect from ZnO films of Ag-decorated localized surface plasmon resonance by varying positions of Ag nanoparticles. Materials Research Bulletin, 2019. 111: p. 17-23.
    13. Zhao, J., et al., Significantly enhanced UV luminescence by plasmonic metal on ZnO nanorods patterned by screen-printing. Nanotechnology, 2018. 29(35)
    14. Lu, J., et al., Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale, 2015. 7(8)
    15. Zheng, Y., et al., Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorganic chemistry, 2007. 46(17): p. 6980-6986.
    16. Sugunan, A., et al., Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology, 2006. 39(1)
    17. Rance, G.A., et al., van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. ACS nano, 2010. 4(8): p. 4920-4928.
    18. G, D. and S. A, Heterogeneous Melting in Low-Dimensional Systems and Accompanying Surface Effects, in Thermodynamics - Physical Chemistry of Aqueous Systems. 2011.
    19. Thompson, C.V., Solid-State Dewetting of Thin Films. Annual Review of Materials Research, 2012. 42(1): p. 399-434.
    20. WARWICK, D.o.P. Photoluminescence. Available from: https://warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpagswarwick/ex5/techniques/optical/pl/.
    21. Sparks, D.L., Grand challenges and opportunities in basic soil science research and the discipline of soil science. Super Soil, 2004.
    22. Simovic, B., et al., Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nanopowders prepared by the solvothermal method. Processing and Application of Ceramics, 2017. 11(1): p. 27-38.

    QR CODE