研究生: |
涂家耘 Tu, Jia-Yun |
---|---|
論文名稱: |
開發金屬-有機框架衍生之觸媒材料作為甲烷雙重組反應之應用 Metal-Organic Framework-derived Nanocatalyst for Methane Bi-reforming |
指導教授: |
蔡德豪
Tsai, De-Hao |
口試委員: |
李岱洲
Lee, Tai-Chou 潘詠庭 Pan, Yung-Tin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 二氧化碳再利用 、甲烷雙重組反應 、金屬有機框架衍生材料 |
外文關鍵詞: | CO2 utilization, bi-reforming of methane, metal-organic framework-derived nanocatalyst |
相關次數: | 點閱:47 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是開發出適合的金屬-有機框架材料 (metal-organic framework, MOF) 衍生觸媒材料,可用以催化甲烷雙重組:甲烷乾式重組反應結合甲烷蒸氣重組反應,以生成可調控H2/CO比例之合成氣。
第一部份研究中,我們利用傳統含浸法或溶劑熱沉積法,將鎳擔載在高度多孔的鈰 (IV) 基金屬有機框架 (MOF) 中,並通過碳化摻鎳的Ce-MOF-808製備NiCeO2@C用於甲烷雙重組反應。結果顯示,MOF衍生觸媒材料可以在較低溫度下催化BRM,並且與傳統含浸法相比,使用自限性後修飾在Ce-MOF中安裝空間分散的鎳位點可以有效地延緩鎳在長時間催化BRM時的燒結現象。這項研究表明,使用MOF衍生材料作觸媒催化甲烷雙重組反應是可行的,並且利用自限性安裝活性物質在MOF中有利於設計更耐燒結的MOF衍生催化劑。
第二部分研究中,我們成功利用氣溶膠式技術合成出MOF材料,Ni/ZIF-8@Al2O3,並藉由二次煅燒後獲得NiZnAl-H樣品作為觸媒材料用以催化甲烷雙重組反應。在甲烷雙重組反應方程式係數比為進料比例進行活性測試,並且利用不同進料比例在650 °C進行10小時的穩定性測試。結果表明,此觸媒擁有良好的活性結果和10小時內的相當穩定催化活性。此外,也證實了反應物中加入水蒸氣確實能有效抑制積碳生成速率,預防觸媒失活,並且藉由調整進料比例,可調控H2/CO比率。然而,由於鋅的低沸點特性,此觸媒不適合於過高的溫度下進行催化,並且其無法完全抑制低溫區間的水煤氣反應,故二氧化碳轉化率在低溫下依然呈現些微負轉化。
本研究提供了運用MOF製備混成式奈米結構材料以及運用甲烷雙重組反應之可行性,對於CO2再利用技術提供一有效途徑。
The objective of this study is to develop suitable MOF-derived catalyst materials for bi-reforming of methane (BRM), which combines dry reforming of methane and steam reforming of methane.
In the first part of the work, we incorporate the catalytically active nickel into a highly porous cerium(IV)-based metal-organic framework (MOF), by utilizing conventional impregnation or self-limiting post-synthetic modification. The nanosized MOF-derived ceria-supported nickel prepared by carbonizing the nickel-incorporated Ce-based MOF is used as catalyst for the bi-reforming of methane (BRM). The results show that the presence of MOF-derived carbon is necessary to initiate the BRM at a lower temperature, and compared to the conventional impregnation, the use of post-synthetic modification to install the spatially separated nickel sites in the parent MOF can effectively retard the agglomeration of nickel in the final MOF-derived catalyst during the long-term BRM. Findings here suggest that the feasibility of using MOF-derived materials as catalysts for bi-reforming of methane. Besides, the use of post-synthetic modification to install the catalytically active species in MOFs is beneficial for designing the MOF-derived catalysts that are more resistive to sintering.
In the second part of the study, we successfully synthesize MOF materials, Ni/ZIF-8@Al2O3, using a facile aerosol-based method to obtain NiZnAl-H samples as catalysts for BRM through two-step calcination. The activity of the catalyst is evaluated under the stoichiometric feed ratio of BRM. Furthermore, stability tests are performed at 650 °C for 10 hours using different feed ratios. The results demonstrate that this catalyst exhibited high activity and maintained considerable catalytic stability within the 10-hour testing period. In addition, the presence of steam is proven to effectively suppress the carbon deposition rate of the dry reforming, preventing catalyst from deactivation. Besides, adjusting the feed ratio enables the modulation of the H2/CO ratio. However, due to the low boiling point of zinc, this catalyst is not suitable for catalysis at excessively high temperatures. The negative conversion of CO2 is still identified due to the insufficient suppression of the water-gas shift reaction in the low-temperature range by the catalysts.
This study demonstrates the feasibility of employing MOFs for preparing hybrid nanostructured materials and the utilization of methane bi-reforming, which offers a promising approach towards the development of CO2 utilization technologies.
[1] H.L. Wang, Y.R. Liu, A. Laaksonen, A. Krook-Riekkola, Z.H. Yang, X.H. Lu, X.Y. Ji, Carbon recycling - An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact, Renew. Sustain. Energy Rev, 131 (2020).
[2] B.J. Lee, J.I. Lee, S.Y. Yun, C.S. Lim, Y.K. Park, Economic evaluation of carbon capture and utilization applying the technology of mineral carbonation at coal-fired power plant, Sustainability, 12 (2020).
[3] P. Challa, G. Paleti, V.R. Madduluri, S.B. Gadamani, R. Pothu, D.R. Burri, R. Boddula, V. Perugopu, S.R.R. Kamaraju, Trends in emission and utilization of CO2: Sustainable feedstock in the synthesis of value-added fine chemicals, Catal. Surv. Asia, 26 (2022) 80-91.
[4] J.J.C. Geerlings, J.H. Wilson, G.J. Kramer, H.P.C.E. Kuipers, A. Hoek, H.M. Huisman, Fischer–Tropsch technology — from active site to commercial process, Appl. Catal. A: Gen., 186 (1999) 27-40.
[5] J.M. Bermudez, B. Fidalgo, A. Arenillas, J.A. Menendez, Dry reforming of coke oven gases over activated carbon to produce syngas for methanol synthesis, Fuel, 89 (2010) 2897-2902.
[6] M.S. Fan, A.Z. Abdullah, S. Bhatia, Catalytic technology for carbon dioxide reforming of methane to synthesis Gas, ChemCatChem, 1 (2009) 192-208.
[7] A.G.S. Hussien, K. Polychronopoulou, A review on the different aspects and challenges of the dry reforming of methane (DRM) reaction, Nanomaterials, 12 (2022) 42.
[8] F. Pompeo, N.N. Nichio, M.M.V.M. Souza, D.V. Cesar, O.A. Ferretti, M. Schmal, Study of Ni and Pt catalysts supported on α-Al2O3 and ZrO2 applied in methane reforming with CO2, Appl. Catal. A: Gen., 316 (2007) 175-183.
[9] S. Arora, R. Prasad, An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts, RSC Adv., 6 (2016) 108668-108688.
[10] S. Afzal, D. Sengupta, A. Sarkar, M. El-Halwagi, N. Elbashir, Optimization Approach to the Reduction of CO2 Emissions for Syngas Production Involving Dry Reforming, ACS Sustain. Chem. Eng., 6 (2018) 7532-7544.
[11] P.D.F. Vernon, M.L.H. Green, A.K. Cheetham, A.T. Ashcroft, Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion, Catal. Today, 13 (1992) 417-426.
[12] J.S. Yu, J.M. Park, J.H. Kwon, K.S. Park, J.W. Choung, M.-J. Park, J.W. Bae, Roles of Al2O3 coating layer on an ordered mesoporous Ni/m-Al2O3 for combined steam and CO2 reforming with CH4, Fuel, 331 (2023) 125702.
[13] U.S. Mohanty, M. Ali, M.R. Azhar, A. Al-Yaseri, A. Keshavarz, S. Iglauer, Current advances in syngas (CO + H2) production through bi-reforming of methane using various catalysts: A review, Int. J. Hydrog. Energy, 46 (2021) 32809-32845.
[14] S. Liu, G. Xiong, H. Dong, W. Yang, Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/γ-Al2O3 catalyst, Appl. Catal. A: Gen., 202 (2000) 141-146.
[15] A.S. Farooqi, M. Yusuf, N.A.M. Zabidi, R. Saidur, M.U. Shahid, B.V. Ayodele, B. Abdullah, Hydrogen-rich syngas production from bi-reforming of greenhouse gases over zirconia modified Ni/MgO catalyst, Int. J. Energy Res., 46 (2022) 2529-2545.
[16] T. Stroud, T.J. Smith, E. Le Saché, J.L. Santos, M.A. Centeno, H. Arellano-Garcia, J.A. Odriozola, T.R. Reina, Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts, Appl. Catal. B: Environ, 224 (2018) 125-135.
[17] A.S. Farooqi, M. Yusuf, N.A. Mohd Zabidi, R. Saidur, K. Sanaullah, A.S. Farooqi, A. Khan, B. Abdullah, A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts, Int. J. Hydrog. Energy, 46 (2021) 31024-31040.
[18] H. Deng, Y. Guo, Artificial neural network model for the prediction of methane bi-reforming products using CO2 and steam, Processes, 10 (2022) 15.
[19] K. Jabbour, P. Massiani, A. Davidson, S. Casale, N. El Hassan, Ordered mesoporous “one-pot” synthesized Ni-Mg(Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM), Appl. Catal. B: Environ, 201 (2017) 527-542.
[20] A.F. Cunha, T.M. Mata, N.S. Caetano, A.A. Martins, J.M. Loureiro, Catalytic bi-reforming of methane for carbon dioxide ennoblement, Energy Rep., 6 (2020) 74-79.
[21] A.F. Cunha, S. Morales-Torres, L.M. Pastrana-Martínez, F.J. Maldonado-Hódar, N.S. Caetano, Syngas production by bi-reforming of methane on a bimetallic Ni-ZnO doped zeolite 13X, Fuel, 311 (2022) 122592.
[22] Ş. Özkara-Aydınoğlu, Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas, Int. J. Hydrog. Energy, 35 (2010) 12821-12828.
[23] H.J. Chae, J.-H. Kim, S.C. Lee, H.-S. Kim, S.B. Jo, J.-H. Ryu, T.Y. Kim, C.H. Lee, S.J. Kim, S.-H. Kang, J.C. Kim, M.-J. Park, Catalytic technologies for CO hydrogenation for the production of light hydrocarbons and middle distillates, Catalysts, 10 (2020) 99.
[24] N.A.K. Aramouni, J.G. Touma, B.A. Tarboush, J. Zeaiter, M.N. Ahmad, Catalyst design for dry reforming of methane: Analysis review, Renew. Sustain. Energy Rev., 82 (2018) 2570-2585.
[25] X. Zhang, J. Deng, T. Lan, Y. Shen, W. Qu, Q. Zhong, D. Zhang, Coking- and sintering-resistant Ni nanocatalysts confined by active BN edges for methane dry reforming, ACS Appl. Mater. Interfaces, 14 (2022) 25439-25447.
[26] D. Pakhare, J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts, Chem. Soc. Rev., 43 (2014) 7813-7837.
[27] U.L. Portugal, C.M.P. Marques, E.C.C. Araujo, E.V. Morales, M.V. Giotto, J.M.C. Bueno, CO2 reforming of methane over zeolite-Y supported ruthenium catalysts, Appl. Catal. A: Gen., 193 (2000) 173-183.
[28] A.D. Ballarini, S.R. de Miguel, E.L. Jablonski, O.A. Scelza, A.A. Castro, Reforming of CH4 with CO2 on Pt-supported catalysts: Effect of the support on the catalytic behaviour, Catal. Today, 107-108 (2005) 481-486.
[29] W. Hua, Y.C. Dai, H.T. Jiang, Noble metal catalysts for methane reforming in material application engineering, Adv. Mater. Res., 648 (2013) 83-87.
[30] A. Abdulrasheed, A.A. Jalil, Y. Gambo, M. Ibrahim, H.U. Hambali, M.Y. Shahul Hamid, A review on catalyst development for dry reforming of methane to syngas: Recent advances, Renew. Sustain. Energy Rev., 108 (2019) 175-193.
[31] H.-M. Kim, W.-J. Jang, S.-Y. Yoo, J.-O. Shim, K.-W. Jeon, H.-S. Na, Y.-L. Lee, B.-H. Jeon, J.W. Bae, H.-S. Roh, Low temperature steam reforming of methane using metal oxide promoted Ni-Ce0.8Zr0.2O2 catalysts in a compact reformer, Int. J. Hydrog. Energy, 43 (2018) 262-270.
[32] W.N. Manan, W. Isahak, Z. Yaakob, CeO2-based heterogeneous catalysts in dry reforming methane and steam reforming methane: A short review, Catalysts, 12 (2022) 22.
[33] H.O. Seo, Recent scientific progress on developing supported Ni catalysts for dry (CO2) reforming of methane, Catalysts, 8 (2018) 110.
[34] C. Wang, Y. Wang, M. Chen, D. Liang, Z. Yang, W. Cheng, Z. Tang, J. Wang, H. Zhang, Recent advances during CH4 dry reforming for syngas production: A mini review, Int. J. Hydrog. Energy, 46 (2021) 5852-5874.
[35] N.A.A. Qasem, R. Ben-Mansour, M.A. Habib, An efficient CO2 adsorptive storage using MOF-5 and MOF-177, Appl. Energy, 210 (2018) 317-326.
[36] E.K. Arabbaghi, J. Mokhtari, M.R. Naimi-Jamal, A. Khosravi, Zn-MOF: an efficient drug delivery platform for the encapsulation and releasing of Imatinib Mesylate, J. Porous Mat., 28 (2021) 641-649.
[37] Y.C. Lin, Q.J. Zhang, C.C. Zhao, H.L. Li, C.L. Kong, C. Shen, L. Chen, An exceptionally stable functionalized metal-organic framework for lithium storage, Chem. Commun., 51 (2015) 697-699.
[38] S. Ketrat, T. Maihom, S. Wannakao, M. Probst, S. Nokbin, J. Limtrakul, Coordinatively unsaturated metal–organic frameworks M3(BTC)2 (M = Cr, Fe, Co, Ni, Cu, and Zn) catalyzing the oxidation of CO by N2O: Insight from DFT calculations, Inorg. Chem., 56 (2017) 14005-14012.
[39] J. Gascon, A. Corma, F. Kapteijn, F.X. Llabrés i Xamena, Metal organic framework catalysis: Quo vadis?, ACS Catal., 4 (2014) 361-378.
[40] N.R. Habib, E. Asedegbega-Nieto, A.M. Taddesse, I. Diaz, Non-noble MNP@MOF materials: synthesis and applications in heterogeneous catalysis, Dalton Trans., 50 (2021) 10340-10353.
[41] J.Y. Chen, Y.W. Li, The road to MOF-related functional materials and beyond: Desire, design, decoration, and development, Chem. Rec., 16 (2016) 1456-1476.
[42] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nat. Rev. Mater., 1 (2016) 1-15.
[43] A.J. Han, B.Q. Wang, A. Kumar, Y.J. Qin, J. Jin, X.H. Wang, C. Yang, B. Dong, Y. Jia, J.F. Liu, X.M. Sun, Recent advances for MOF-derived carbon-supported single-atom catalysts, Small Methods, 3 (2019) 21.
[44] Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang, Metal–organic framework-derived porous materials for catalysis, Coord. Chem. Rev., 362 (2018) 1-23.
[45] W. Xia, A. Mahmood, R.Q. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy Environ. Sci., 8 (2015) 1837-1866.
[46] J.C. Ren, Y.L. Huang, H. Zhu, B.H. Zhang, H.K. Zhu, S.H. Shen, G.Q. Tan, F. Wu, H. He, S. Lan, X.H. Xia, Q. Liu, Recent progress on MOF-derived carbon materials for energy storage, Carbon Energy, 2 (2020) 176-202.
[47] M.H. Sayahi, M. Ghomi, S.M. Hamad, M.R. Ganjali, M. Aghazadeh, M. Mahdavi, S. Bahadorikhalili, Electrochemical synthesis of three‐dimensional flower‐like Ni/Co–BTC bimetallic organic framework as heterogeneous catalyst for solvent‐free and green synthesis of substituted chromeno [4, 3–b] quinolones, J. Chin. Chem. Soc., 68 (2021) 620-629.
[48] Y.C. Jeong, J.W. Seo, J.H. Kim, S. Nam, M.C. Shin, Y.S. Cho, J.S. Byeon, C.R. Park, S.J. Yang, Function-regeneration of non-porous hydrolyzed-MOF-derived materials, Nano Res., 12 (2019) 1921-1930.
[49] S. Das, J. Ashok, Z. Bian, N. Dewangan, M.H. Wai, Y. Du, A. Borgna, K. Hidajat, S. Kawi, Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights, Appl. Catal. B: Environ, 230 (2018) 220-236.
[50] Z. Li, L. Mo, Y. Kathiraser, S. Kawi, Yolk–satellite–shell structured Ni–yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction, ACS Catal., 4 (2014) 1526-1536.
[51] C.-S. Lai, Y.-C. Chen, H.-F. Wang, H.-C. Ho, R.-M. Ho, D.-H. Tsai, Gas-phase self-assembly of uniform silica nanostructures decorated and doped with silver nanoparticles, Nanotechnology, 28 (2017) 035602.
[52] L.-T. Chen, U.-H. Liao, J.-W. Chang, S.-Y. Lu, D.-H. Tsai, Aerosol-based self-assembly of a Ag–ZnO Hybrid nanoparticle cluster with mechanistic understanding for enhanced photocatalysis, Langmuir, 34 (2018) 5030-5039.
[53] T.-Y. Liang, H.-H. Chen, D.-H. Tsai, Nickel hybrid nanoparticle decorating on alumina nanoparticle cluster for synergistic catalysis of methane dry reforming, Fuel Process. Technol., 201 (2020) 106335.
[54] A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures, Nat. Chem., 5 (2013) 203-211.
[55] J. Troyano, C. Çamur, L. Garzón-Tovar, A. Carné-Sánchez, I. Imaz, D. Maspoch, Spray-drying synthesis of MOFs, COFs, and related composites, Acc. Chem. Res., 53 (2020) 1206-1217.
[56] L. Garzon-Tovar, M. Cano-Sarabia, A. Carne-Sanchez, C. Carbonell, I. Imaz, D. Maspoch, A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads, React. Chem. Eng., 1 (2016) 533-539.
[57] Y.-S. Lin, J.-Y. Tu, D.-H. Tsai, Steam-promoted methane-CO2 reforming by NiPdCeOx@SiO2 nanoparticle clusters for syngas production, Int. J. Hydrog. Energy, 46 (2021) 25103-25113.
[58] J. Jacobsen, A. Ienco, R. D'Amato, F. Costantino, N. Stock, The chemistry of Ce-based metal-organic frameworks, Dalton Trans., 49 (2020) 16551-16586.
[59] Z.G. Hu, Y.X. Wang, D. Zhao, The chemistry and applications of hafnium and cerium(IV) metal-organic frameworks, Chem. Soc. Rev., 50 (2021) 4629-4683.
[60] L.P. Teh, H.D. Setiabudi, S.N. Timmiati, M.A.A. Aziz, N.H.R. Annuar, N.N. Ruslan, Recent progress in ceria-based catalysts for the dry reforming of methane: A review, Chem. Eng. Sci., 242 (2021) 116606.
[61] I. Luisetto, S. Tuti, C. Romano, M. Boaro, E. Di Bartolomeo, J.K. Kesavan, S.S. Kumar, K. Selvakumar, Dry reforming of methane over Ni supported on doped CeO2: New insight on the role of dopants for CO2 activation, J. CO2 Util., 30 (2019) 63-78.
[62] F. Matei-Rutkovska, G. Postole, C.G. Rotaru, M. Florea, V.I. Pârvulescu, P. Gelin, Synthesis of ceria nanopowders by microwave-assisted hydrothermal method for dry reforming of methane, Int. J. Hydrog. Energy, 41 (2016) 2512-2525.
[63] M. Lammert, C. Glissmann, N. Stock, Tuning the stability of bimetallic Ce(IV)/Zr(IV)-based MOFs with UiO-66 and MOF-808 structures, Dalton Trans., 46 (2017) 2425-2429.
[64] L. Karam, J. Reboul, S. Casale, P. Massiani, N. El Hassan, Porous nickel-alumina derived from metal-organic framework (MIL-53): A new approach to achieve active and stable catalysts in methane dry reforming, ChemCatChem, 12 (2020) 373-385.
[65] N.R. Bennedsen, S. Kramer, J.J. Mielby, S. Kegnaes, Cobalt-nickel alloy catalysts for hydrosilylation of ketones synthesized by utilizing metal-organic framework as template, Catal. Sci. Technol., 8 (2018) 2434-2440.
[66] C.-H. Shen, C.-H. Chuang, Y.-J. Gu, W.H. Ho, Y.-D. Song, Y.-C. Chen, Y.-C. Wang, C.-W. Kung, Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance, ACS Appl. Mater. Interfaces, 13 (2021) 16418-16426.
[67] H. Noh, C.-W. Kung, K.-i. Otake, A.W. Peters, Z. Li, Y. Liao, X. Gong, O.K. Farha, J.T. Hupp, Redox-mediator-assisted electrocatalytic hydrogen evolution from water by a molybdenum sulfide-functionalized metal–organic framework, ACS Catal., 8 (2018) 9848-9858.
[68] Z. Li, A.W. Peters, V. Bernales, M.A. Ortuño, N.M. Schweitzer, M.R. DeStefano, L.C. Gallington, A.E. Platero-Prats, K.W. Chapman, C.J. Cramer, L. Gagliardi, J.T. Hupp, O.K. Farha, Metal–organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature, ACS Cent. Sci., 3 (2017) 31-38.
[69] S.B. Tang, F.L. Qiu, S.J. Lu, Effect of supports on the carbon deposition of nickel catalysts for methane reforming with CO2, Catal. Today, 24 (1995) 253-255.
[70] R. Kumar, K. Kumar, N.V. Choudary, K.K. Pant, Effect of support materials on the performance of Ni-based catalysts in tri-reforming of methane, Fuel Process. Technol., 186 (2019) 40-52.
[71] F. Chen, W.Z. Gao, K.Z. Wang, C.W. Wang, X.M. Wu, N. Liu, X.Y. Guo, Y.L. He, P.P. Zhang, G.H. Yang, N. Tsubaki, Enhanced performance and stability of Cu/ZnO catalyst by introducing MgO for low-temperature methanol synthesis using methanol itself as catalytic promoter, Fuel, 315 (2022) 14.
[72] S. Davidson, J.M. Sun, Y. Wang, Ethanol steam reforming on Co/CeO2: The effect of ZnO promoter, Top. Catal., 56 (2013) 1651-1659.
[73] J. Chen, Y. Qiao, Y. Li, Promoting effects of doping ZnO into coprecipitated Ni-Al2O3 catalyst on methane decomposition to hydrogen and carbon nanofibers, Appl. Catal. A: Gen., 337 (2008) 148-154.
[74] P. Rosha, S.K. Mohapatra, S.K. Mahla, A. Dhir, Catalytic reforming of synthetic biogas for hydrogen enrichment over Ni supported on ZnOCeO2 mixed catalyst, Biomass Bioenergy, 125 (2019) 70-78.
[75] S.M.M. Nataj, S.M. Alavi, G. Mazloom, Catalytic performance of Ni supported on ZnO-Al2O3 composites with different Zn content in methane dry reforming, J. Chem. Technol. Biotechnol., 94 (2019) 1305-1314.
[76] J.-Y. Tu, C.-H. Shen, D.-H. Tsai, C.-W. Kung, Carbonized Nickel-Incorporated Metal–Organic Frameworks for Methane Reforming: Post-Synthetic Modification vs Impregnation, ACS Appl. Nano Mater., 6 (2023) 10269-10279.
[77] D.-Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15 (1976) 59-64.
[78] L.E. Øi, Aspen HYSYS simulation of CO2 removal by amine absorption from a gas based power plant, in: The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007); 30-31 October; 2007; Göteborg (Särö), Citeseer, 2007, pp. 73-81.
[79] M.A. Soria, C. Mateos-Pedrero, A. Guerrero-Ruiz, I. Rodríguez-Ramos, Thermodynamic and experimental study of combined dry and steam reforming of methane on Ru/ ZrO2-La2O3 catalyst at low temperature, Int. J. Hydrog. Energy, 36 (2011) 15212-15220.
[80] M. Lammert, C. Glißmann, H. Reinsch, N. Stock, Synthesis and characterization of new Ce(IV)-MOFs exhibiting various framework topologies, Cryst. Growth Des., 17 (2017) 1125-1131.
[81] D.J.M. Bevan, Ordered intermediate phases in the system CeO2 Ce2O3, J. inorg. nucl. chem., 1 (1955) 49-59.
[82] S. Loridant, Raman spectroscopy as a powerful tool to characterize ceria-based catalysts, Catal. Today, 373 (2021) 98-111.
[83] Z. Wu, M. Li, J. Howe, H.M. Meyer, III, S.H. Overbury, Probing defect sites on CeO2 nanocrystals with well-defined surface planes by raman spectroscopy and O2 adsorption, Langmuir, 26 (2010) 16595-16606.
[84] L. Fan, P.F. Liu, X. Yan, L. Gu, Z.Z. Yang, H.G. Yang, S. Qiu, X. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis, Nat. Commun., 7 (2016) 10667.
[85] M. Cheng, H.S. Fan, Y.J. Song, Y.M. Cui, R.M. Wang, Interconnected hierarchical NiCo2O4 microspheres as high-performance electrode materials for supercapacitors, Dalton Trans., 46 (2017) 9201-9209.
[86] E. Beche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz), Surf. Interface Anal., 40 (2008) 264-267.
[87] G.-H. Lai, J.H. Lak, D.-H. Tsai, Hydrogen production via low-temperature steam–methane reforming using Ni–CeO2–Al2O3 hybrid nanoparticle clusters as catalysts, ACS Appl. Energy Mater., 2 (2019) 7963-7971.
[88] S.C. Dantas, J.C. Escritori, R.R. Soares, C.E. Hori, Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane, Chem. Eng. J., 156 (2010) 380-387.
[89] H. Eltejaei, H. Reza Bozorgzadeh, J. Towfighi, M. Reza Omidkhah, M. Rezaei, R. Zanganeh, A. Zamaniyan, A. Zarrin Ghalam, Methane dry reforming on Ni/Ce0.75Zr0.25O2–MgAl2O4 and Ni/Ce0.75Zr0.25O2–γ-alumina: Effects of support composition and water addition, Int. J. Hydrog. Energy, 37 (2012) 4107-4118.
[90] N. Wang, K. Shen, L. Huang, X. Yu, W. Qian, W. Chu, Facile route for synthesizing ordered mesoporous Ni–Ce–Al Oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas, ACS Catal., 3 (2013) 1638-1651.
[91] P.N. Romano, J.F.S. de Carvalho Filho, J.M.A.R. de Almeida, E.F. Sousa-Aguiar, Screening of mono and bimetallic catalysts for the dry reforming of methane, Catal. Today, 394-396 (2022) 348-356.
[92] A. Auxéméry, B.B. Frias, E. Smal, K. Dziadek, G. Philippot, P. Legutko, M. Simonov, S. Thomas, A. Adamski, V. Sadykov, K. Parkhomenko, A.-C. Roger, C. Aymonier, Continuous supercritical solvothermal preparation of nanostructured ceria-zirconia as supports for dry methane reforming catalysts, J. Supercrit. Fluids, 162 (2020) 104855.
[93] J.Q. Tian, B. Ma, S.Y. Bu, Q.H. Yuan, C. Zhao, One-pot synthesis of highly sintering- and coking-resistant Ni nanoparticles encapsulated in dendritic mesoporous SiO2 for methane dry reforming, Chem. Commun., 54 (2018) 13993-13996.
[94] Q. Zhang, T. Tang, J. Wang, M. Sun, H. Wang, H. Sun, P. Ning, Facile template-free synthesis of Ni-SiO2 catalyst with excellent sintering- and coking-resistance for dry reforming of methane, Catal. Commun., 131 (2019) 105782.
[95] X. Kong, Y. Zhu, H. Zheng, Y. Zhu, Z. Fang, Inclusion of Zn into metallic Ni enables selective and effective synthesis of 2,5-dimethylfuran from bioderived 5-hydroxymethylfurfural, ACS Sustain. Chem. Eng., 5 (2017) 11280-11289.
[96] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985) 603-619.
[97] C. Wu, D. Lee, M.R. Zachariah, Aerosol-based self-assembly of nanoparticles into solid or hollow mesospheres, Langmuir, 26 (2010) 4327-4330.
[98] S. Sokolov, J. Radnik, M. Schneider, U. Rodemerck, Low-temperature CO2 reforming of methane over Ni supported on ZnAl mixed metal oxides, Int. J. Hydrog. Energy, 42 (2017) 9831-9839.
[99] C. Chen, X. Wang, X. Chen, X. Liang, X. Zou, X. Lu, Combined steam and CO2 reforming of methane over one-pot prepared Ni/La-Si catalysts, Int. J. Hydrog. Energy, 44 (2019) 4780-4793.
[100] B. Jin, K. Wang, H. Yu, X. He, X. Liang, Engineering oxygen vacancy-rich CeOx overcoating onto Ni/Al2O3 by atomic layer deposition for bi-reforming of methane, Chem. Eng. J., 459 (2023) 141611.
[101] I.H. Son, S.J. Lee, A. Soon, H.-S. Roh, H. Lee, Steam treatment on Ni/γ-Al2O3 for enhanced carbon resistance in combined steam and carbon dioxide reforming of methane, Appl. Catal. B: Environ, 134-135 (2013) 103-109.
[102] Z.X. Liu, F.F. Gao, Y.A. Zhu, Z.C. Liu, K.K. Zhu, X.G. Zhou, Bi-reforming of methane with steam and CO2 under pressurized conditions on a durable Ir-Ni/MgAl2O4 catalyst, Chem. Commun., 56 (2020) 13536-13539.
[103] T.-Y. Liang, C.-Y. Lin, F.-C. Chou, M. Wang, D.-H. Tsai, Gas-phase synthesis of Ni–CeOx hybrid nanoparticles and their synergistic catalysis for simultaneous reforming of methane and carbon dioxide to syngas, J. Phys. Chem. C, 122 (2018) 11789-11798.
[104] J. Li, L. Shi, G. Feng, Z. Shi, C. Sun, D. Kong, Selective hydrogenation of naphthalene over γ-Al2O3-supported NiCu and NiZn bimetal catalysts, Catalysts, 10 (2020) 1215.
[105] Q. Zhou, Q. Hao, Y. Li, J. Yu, C. Xu, H. Liu, S. Yan, Free-standing trimodal porous NiZn intermetallic and Ni heterojunction as highly efficient hydrogen evolution electrocatalyst in the alkaline electrolyte, Nano Energy, 89 (2021) 106402.
[106] R.R. Kuruppathparambil, T. Jose, R. Babu, G.-Y. Hwang, A.C. Kathalikkattil, D.-W. Kim, D.-W. Park, A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates, Appl. Catal. B: Environ, 182 (2016) 562-569.
[107] J. Horlyck, C. Lawrey, E.C. Lovell, R. Amal, J. Scott, Elucidating the impact of Ni and Co loading on the selectivity of bimetallic NiCo catalysts for dry reforming of methane, Chem. Eng. J., 352 (2018) 572-580.
[108] J. Zhang, H. Wang, A.K. Dalai, Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4, Appl. Catal. A: Gen., 339 (2008) 121-129.
[109] T.Z. Yang, W. Chen, L. Chen, W.F. Liu, D.C. Zhang, CH4 reforming by CO2 and O2 using Ni-M (M= Cu, Fe, Co, Mn, Zn, Cr) bimetallic aerogel catalysts, in: Energy Technology 2016: Carbon Dioxide Management and Other Technologies, John Wiley & Sons Inc, Nashville, TN, 2016, pp. 171-180.
[110] R.W. Howarth, M.Z. Jacobson, How green is blue hydrogen?, Energy Sci. Eng., 9 (2021) 1676-1687.
[111] M. Yu, K. Wang, H. Vredenburg, Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen, Int. J. Hydrog. Energy, 46 (2021) 21261-21273.
[112] M.H. Ali Khan, R. Daiyan, P. Neal, N. Haque, I. MacGill, R. Amal, A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation, Int. J. Hydrog. Energy, 46 (2021) 22685-22706.
[113] P. Gangadharan, K.C. Kanchi, H.H. Lou, Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane, Chem. Eng. Res. Des., 90 (2012) 1956-1968.