研究生: |
林家榆 |
---|---|
論文名稱: |
疊代式影像重建演算法在飛行時間正子斷層掃描之研究 An Investigation of Iterative Image Reconstruction Algorithms in Time-of-Flight Positron Emission Tomography |
指導教授: |
許靖涵
Hsu, Ching-Han |
口試委員: |
蕭穎聰
王福年 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 正子斷層掃描 、飛行時間 、疊代式影像重建 |
外文關鍵詞: | PET, Time-of-Flight, iterative image reconstruction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
飛行時間正子斷層掃描系統(Time-of-flight positron emission tomography, TOF PET)除了能提供傳統PET高空間解析度的功能性影像外,更具有高時間解析度的優勢,使得偵收系統能夠測量互毀光子對到達偵檢器的時間差,進而改善影像品質。然而,在TOF PET成像時,因偵收資料包含空間資訊和時間資訊,因此TOF PET影像重建耗費的時間較傳統PET影像重建多。本研究建立一個飛行時間資料的統計模型,針對TOF PET重建過慢的問題,應用PET快速疊代演算法並加入TOF PET的時間資訊,以加速影像重建的速度。模擬實驗結果顯示,相較於傳統PET重建影像,TOF PET重建影像有較高的訊雜比和較高的對比恢復性。另外在快速疊代演算法的部分,相較於傳統的TOF PET加速演算法,本研究提出的飛行時間加速演算法能進一步提升收斂速度。整體而言,在不影響TOF PET高品質的前提下,本研究所提出的TOF PET加速演算法能確實達到加速影像收斂的目的。
The time-of-flight (TOF) positron emission tomography(PET) system can provide not only high spatial resolution in functional image as conventional PET but high time resolution. High time resolution provides the measurement ability of time difference of annihilation photon pair reach detector. The characteristic can improve image quality. In TOF PET imaging, the measurement data contain spatial and temporal information. TOF PET image reconstruction takes consequently more time than conventional PET. In this study, we contributed a two-dimension statistical model for TOF data. We also developed a fast TOF iterative image reconstruction algorithm to improve low convergence rate of TOF image reconstruction. The results of experiments show that TOF reconstruction can obtain higher signal-to-noise ratio (SNR) and higher contrast recovery rate than conventional PET. The fast TOF iterative image reconstruction we derived have faster convergent rate than conventional one. In conclusion, the TOF PET fast iterative method we derived can achieve the acceleration of image reconstruction without spoiling high image quality characteristics of TOF PET.
[1] L. A. Shepp, and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” Medical Imaging, IEEE Transactions on, vol. 1, no. 2, pp. 113-122, 1982.
[2] H. M. Hudson, and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” Medical Imaging, IEEE Transactions on, vol. 13, no. 4, pp. 601-609, 1994.
[3] T. K. Lewellen, “Time-of-flight PET,” Seminars in Nuclear Medicine, vol. 28, pp. 268-275, 1998.
[4] W. Moses, “Time of flight in PET revisited,” Nuclear Science, IEEE Transactions on, vol. 50, no. 5, pp. 1325-1330, 2003.
[5] D. L. Snyder, L. J. Thomas, and M. M. Ter-Pogossian, “A Matheematical Model for Positron-Emission Tomography Systems Having Time-of-Flight Measurements,” Nuclear Science, IEEE Transactions on, vol. 28, no. 3, pp. 3575-3583, 1981.
[6] M. Conti, B. Bendriem, M. Casey et al., “First experimental results of time-of-flight reconstruction on an LSO PET scanner,” Physics in medicine and biology, vol. 50, no. 19, pp. 4507-4526, 2005.
[7] R. M. Manjeshwar, Y. Shao, and F. P. Jansen, “Image quality improvements with time-of-flight positron emission tomography for molecular imaging,” IEEE-ICASSP, vol. 5, pp. v/853-v/856 2005.
[8] S. R. Cherry, J. A. Sorenson, and M. E. Phelps, Physics in Nuclear Medicine, 3rd ed., pp. 101, 2003.
[9] W. W. Moses, and S. Derenzo, “Prospects for time-of-flight PET using LSO scintillator,” Nuclear Science, IEEE Transactions on, vol. 46, no. 3, pp. 474-478, 1999.
[10] D. J. Kadrmas, M. E. Casey, M. Conti et al., “Impact of time-of-flight on PET tumor detection,” Journal of Nuclear Medicine, vol. 50, no. 8, pp. 1315-1323, 2009.
[11] S. Strother, M. Casey, and E. Hoffman, “Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalents counts,” Nuclear Science, IEEE Transactions on, vol. 37, no. 2, pp. 783-788, 1990.
[12] M. Defrise, M. E. Casey, C. Michel et al., “Fourier rebinning of time-of-flight PET data,” Physics in medicine and biology, vol. 50, pp. 2749, 2005.
[13] M. Defrise, V. Panin, C. Michel et al., “Discrete axial rebinning for time-of-flight PET,” Nuclear Science Symposium Conference Record, vol. 4, pp. 2370-2374, 2006.
[14] M. Daube-Witherspoon, S. Surti, S. Matej et al., “Influence of time-of-flight kernel accuracy in TOF-PET reconstruction,” Nuclear Science Symposium Conference Record, vol. 3, pp. 1723-1727, 2006.
[15] S. Vandenberghe, M. E. Daube-Witherspoon, R. M. Lewitt et al., “Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing,” Physics in medicine and biology, vol. 51, no. 6, pp. 1603-1621, 2006.
[16] C. C. Watson, “Extension of single scatter simulation to scatter correction of time-of-flight PET,” Nuclear Science, IEEE Transactions on, vol. 54, no. 5, pp. 1679-1686, 2007.
[17] C. M. Kao, “Windowed image reconstruction for time-of-flight positron emission tomography,” Physics in medicine and biology, vol. 53, no. 13, pp. 3431-3445, 2008.
[18] C. Lois, B. W. Jakoby, M. J. Long et al., “An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging,” Journal of Nuclear Medicine, vol. 51, no. 2, pp. 237-245, 2010.
[19] J. Qi, R. M. Leahy, S. R. Cherry et al., “High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner,” Physics in medicine and biology, vol. 43, no. 4, pp. 1001-1013, 1998.
[20] R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Medical Physics, vol. 12, no. 2, pp. 252-255, 1985.
[21] B. Jakoby, Y. Bercier, M. Conti et al., “Performance investigation of a time-of-flight PET/CT scanner,” Nuclear Science Symposium Conference Record, pp. 3738-3743, 2008.
[22] M. Conti, “Effect of randoms on signal-to-noise ratio in TOF PET,” Nuclear Science, IEEE Transactions on, vol. 53, no. 3, pp. 1188-1193, 2006.