研究生: |
吳昇洋 |
---|---|
論文名稱: |
應用資料採礦技術評估客服中心顧客關係管理之績效 Using Data Mining Technology to Evaluate Performance of Call Center in Customer Relationship Management |
指導教授: |
張瑞芬
Amy J.C. Trappey |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 資料採礦 、顧客關係管理 、群集分析 、類神經網路 、客服中心 |
外文關鍵詞: | customer relationship management, contact center, data mining, key performance indicators, cluster |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在目前商業環境不斷快速變遷,迫使企業必須持續求新求變來因應。而顧客意識的抬頭,更使得企業不得不去關注,並想辦法將其網絡往外擴展,將顧客所擁有的資訊纳入企業的競爭能力當中。而在資訊科技的推波助瀾下,激增的市場交易也使得各企業所需儲存與處理的資料量越來越龐大。在這種情況下,企業的焦點已從以往的資料蒐集與整理,轉變成如何有效的利用資料庫來進行資訊的獲取。本論文整理出與客服中心顧客滿意度具有顯著關係之關鍵績效指標,客服中心管理者可透過績效指標與產業平均之比較來衡量客服中心營運績效進而改善。另外,本論文將關鍵績效指標以加權平均方法產生顧客滿意度與客服人員績效兩個指標,透過這兩個指標值對顧客與客服人員分別進行分群分析,分群後,客服管理者可以找出顧客滿意度高的群組成員進行一對一關係行銷,或找出績效略低之客服人員加強訓練,藉此維持顧客忠誠度與改善客服人員表現進而提升客服中心營運績效。在產生顧客滿意度指標方面,本論文以類神經方法來訓練推導出各變數的權重值,而實際的顧客資料由問卷方式進行蒐集。本論文主要目的在於應用資料採礦方法於客服中心上,並搭配關鍵績效指標的輔助,分析顧客的滿意程度以及客服人員工作績效,以落實顧客關係管理的理念,並實做資料分析雛型系統供顧客服務中心作為參考之用。
With the rapid development of advanced information technology in data collection and data analysis, an enterprise has more opportunities to analyze and synthesize customer behaviors and profiles to increase competitiveness, adjust product market position, and build customer loyalty. Thus, a customer-centric enterprise shifts its focus from simply getting data to obtaining meaningful knowledge. A contact center is an important part in Customer Relationship Management (CRM). A customer gets the first impression of an enterprise from contacting with the contact center. The performance of contact center may influence the loyalty of the customers, so an appropriate evaluation of its achievement and performance is necessary. We define the significant Key Performance Indicators (KPIs) of contact center operations, and generate the indicators of customer satisfaction and agent performance. The customer satisfaction and agent performance are measured using the weighted average of KPIs. The weights of the customer satisfaction KPIs are derived by neural network methodology. An enterprise can improve its contact center performance by comparing its KPIs values to the industry’s benchmarks values. This research uses data mining technology (such as clustering and neural network) to develop the contact center evaluation methods for the continuous improvement of customer service quality.
1. Anton, 2001, eBusiness Best Practices for All Industries, Purdue University Press.
2. Adriaans, P. and Zantinge, D., 1996, Data Mining, Addison Wesley.
3. Bhatia, A., 1999, A Roadmap to Implementation of Customer Relationship Management, http:// crm.ittoolbox.com/peer/docs/crm_abbhatia.htm
4. Bails, D. G. and Peppers, L. C., 1993, Business fluctuations: forecasting techniques and applications, Englewood Cliffs, NJ, Prentice Hall.
5. Berry, M. J.A. and Linoff, G., 1997, Data Mining Technique for Marketing: Sale, and Customer Support, New York, John Wiley & Sons, Inc.
6. Bennington, L., Cummane, J. and Conn, P., 2000, “Customer satisfaction and call centers: an Australian study,” International Journal of Service Industry Management, 11(2), 162-173.
7. Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., and Zanasi, A., 1998, Discovering Data Mining From Concept to Implementation, Upper Saddle River, NJ, Pretice Hall PTR.
8. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P., 1996, “The KDD process for extracting useful knowledge from volumes of data,” Communications of the ACM, 39(11), 27-34.
9. Grupe, F. H. and Owrang, M. M., 1995, “Database mining discovering new knowledge and cooperative advantage,” Information Systems Management, 12(4), 26-31.
10. Haykin, S., 1999, Neural net works – a comprehensive foundation (2nd ed.), Upper Saddle River, NJ, Prentice Hall.
11. Goldenberg, B. J., 2002, CRM Automation, Upper Saddle River, NJ, Prentice Hall PTR.
12. Kalakota, R. and Robinson, M., 1999, e-Business: Roadmap for Success, Boston, MA, Addison-Wesley.
13. Kandell, J., 2000, CRM, ERM, one-to-one Decoding Relationship Management Theory and technology, Trusts & Estates.
14. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu, A., 2002, “An Efficient k-Means Clustering Algorithm:Analysis and Implementation,” IEEE, 24(7), pp. 881-892.
15. Liu, H.-I., 2003, “Designing a Multi-Functional The contact center Using Internet Technology,” Master Thesis of Department of Industrial Engineering and Engineering Management, National Tsing Hua University.
16. Merly, D., 1999, “How to Avoid the 10 Biggest Mistake in CRM,” Journal of Business Strategy, 20(6), 22-26.
17. Peppers, D., Rogers, M., and Dorf, B., (1999, January/February), “Is your company ready for one to one marketing?,” Harvard Business Review, 77(1), 151-164.
18. Peacock, P. R., 1998, “Data mining in marketing: Part I,” Marketing Management, 6(4), pp. 8-18.
19. Sharp, D. E., 2003, Customer Relationship Management Systems Handbook, Boca Raton, Fla., Auerbach.
20. Sharma, S.C, 1996, Applied Multivariate Techniques, New York, John Wiley & Sons.
21. Saville, D., 2000, Why KPIs and Process Documentation are Critical in Running an Effective Contact Center, SITEL, http://www.sitel.com/enu/Interview02.stm.
22. Stone, M., Woodcock, N., and Wilson, M., 1996, “Managing the Change from Marketing Planning to Customer Relationship Management,” Long Range Planning, 29(5), 675–683.
23. Trappey, A.J.C., Trappey, C.V., and Hsu, F.-C., 2004, "Customer Service Evaluation Using Key Performance Indicators," Proceedings ISOneWorld 2004 Conference and Convention, Les Vegas, USA, April 14-16.
24. Trappey, A.J.C. 2003, 顧客服務管理-CRM實戰理論與實務, Hwa-Tai Publishing Co. Taipei, Taiwan (in Chinese), ISBN 957-607-486-0.
25. Trepper, C. (2000, May), “Customer care goes end-to-end,” Information Week, 786, 55-73.
26. Wayland, R. E. and Cole, P. M., 1997, Customer Connections: New Strategies for Growth, MA: Harvard Business School Press.
27. Waite, A. J., 2001, A practical guide to the contact center technology, Gilroy, CA , CMP Books.
28. NCR,「整合企業經營策略與顧客關係管理」,電子化企業經理人報告,民國89年9月,頁20-25。
29. 吳淑貞,2001,「台灣導入與運用顧客關係管理系統的困難及因應之道」,國立中正大學企業管理研究所碩士論文。
30. 周政宏,1995,「神經網路理論與實務」,松崗電腦圖書資料股份有限公司出版。
31. 邱志洲,2002,Journal of the Chinese Institute of Industrial Engineers, 19(2), 9-22。
32. 陳文華,2000,「運用資料倉儲技術於顧客關係管理」, 能力雜誌。
33. 陳石麟,2002,「資料採礦於預測國人出國觀光需求之應用-以整體、香港和澳門為例」,(指導教授:陳文賢),國立臺灣大學資訊管理研究所論文。
34. 曾世忠,2003,「效率客服,客服中心的程序規劃」,培生教育出版集團。
35. 經濟部商業司,「電子商務導航」,第二卷第十三期, http://www.ec.org.tw
36. 童啟晟,2000,「CRM 之產業現況與應用趨勢」,Internet 網際先鋒。
37. 張妤莉,2001,「資料挖掘之導入與影響--以銀行業為例」,(指導教授:洪順慶),國立政治大學企業管理學系碩士論文。
38. 曾慶深,2002,「應用類神經在流場影像上質點運動之辨識」,(指導教授:林銘崇、丁肇隆),國立台灣大學工程科學及海洋工程學研究所碩士論文。
39. 廖雅郁,2002,「應用資料探採於我國西藥行銷之研究」,(指導教授:陳光華),國立交通大學經營管理研究所論文。
40. 盧坤利,2000,「台灣地區企業採用顧客關係管理系統之影響因素研究」,(指導教授:陳文賢),國立台灣大學商學研究所碩士論文。
41. 樓玉玲,1998,「以資料採擷技術分析政大通識課程」,(指導教授:劉文卿),國立政治大學資訊管理研究所碩士論文。
42. 劉志剛,2003,「以資料分析技術評估顧客服務管理之績效」,(指導教授:張瑞芬),國立清華大學工業工程與工程管理研究所碩士論文。
43. 羅華強,2001,「類神經網路─Matlab的應用」,儒林書局。
44. 聯慷科技,2001,「從傳統CTI到Web Enable」,通訊雜誌,87。http://www.cqinc.com.tw/grandsoft/cm/087/afo879.htm