簡易檢索 / 詳目顯示

研究生: 王宏立
Wang, Hung-Li
論文名稱: 開發氣相電泳式分析方法鑑定生醫奈米材料
Characterization of Biomedical Nanomaterials Using Gas-Phase Electrophoretic Approaches
指導教授: 蔡德豪
Tsai, De-Hao
口試委員: 汪上曉
Wong, David Shan-Hill
呂世源
Lu, Shih-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 膠體電噴灑移動度玻尿酸金屬有機框架材料氣溶膠布洛芬釋放交聯
外文關鍵詞: colloid, electrospray, mobility, hyaluronic acid, metal-organic framework, aerosol, ibuprofen, release, crosslinking
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氣相電泳法 (the gas-phase electrophoretic approach) 為基礎,開發生醫奈米材料分析鑑定之儀器技術與方法,藉由電噴灑式電移動度粒徑分析儀 (electrospray-differential mobility analyzer, ES-DMA) 和氣溶膠粒子重量分析儀 (aerosol particle mass analyzer, APM) 來量測生醫奈米材料分散於溶液相的電移動度粒徑分佈、重量分佈、濃度、膠體穩定性等性質,並藉由這些資訊可進一步探討其在水溶液環境中發生的反應與其動力學。
    首先在研究的第一部分,我們利用 ES-DMA 開發一套快速且具高解析度的分析方法來定量的鑑定玻尿酸 (hyaluronic acid, HA) 和研究其交聯反應。利用 ES-DMA 之分析技術我們可以成功得到 HA 的電移動度粒徑分佈、數量濃度、分子量分佈、多分散性指數 (polydispersity index, PDI) 等參數。同時,粒徑篩析層析法 (Size exclusion chromatography, SEC) 則被用來當作一個與 ES-DMA 相互比較的分析方法,實驗結果指出在半定量的基礎上,以ES-DMA 量測出 HA 的平均分子量和 PDI 值與 SEC 分析的實驗結果是接近的。除上述 HA 基本性質之外,經由隨時間的量測並追蹤 HA 與 1,4-butanediol diglycidyl ether (BDDE) 的交聯反應也能夠被成功地鑑定,根據實驗結果 HA 和 BDDE 交聯的反應程度與反應速率和反應溫度與 BDDE/HA 濃度比值呈現正相關性。根據實驗結果並在 Smoluchowski 聚集模型下,BDDE 與 HA 交聯反應的活化能為 ≈21 kJ/mol。此研究顯示,我們成功開發以 ES-DMA 為基礎之新的量測方法來快速且定量的鑑定 HA 與其衍生的產品,並能提供即時量測監控的能力來應用在 HA 交聯反應的配方製程上。
    在研究的第二部分,利用氣相電泳法以 ES-DMA 和 APM 的分析技術,我們可以量測金屬-有機框架 (Metal-organic framework, MOF) 應用在藥物載體系統之載藥前後電移動度粒徑分佈與粒子重量分佈的變化,並探討其膠體結構穩定性、藥物擔載量、及藥物釋放狀況等等。在此我們選用 UiO-66-NH2¬ 和布洛芬 (Ibuprofen, Ibu) 分別當作代表性的 MOF 藥物載體及代表性的藥物分子,並利用 ES-DMA/APM 來分析此藥物載體系統。以此方法我們成功量測到 UiO-66-NH2 的載藥量(≈55 mg的布洛芬/g 的 UiO-66-NH2),且在酸性磷酸鹽緩衝液的環境下,UiO-66-NH2 的結構穩定性和布洛芬的釋放也可以被量測出來。此開發量測方法提供一個概念的證明:對於以 MOF 為基礎的原料藥物載體系統,可以利用此方法直接量測分析 MOF 藥物載體系統之性質與狀態,對其相關研究有所幫助。
    本研究開發氣相電泳式分析方法來量測應用於生醫領域之奈米材料,藉由此分析方法即時得到與材料相關之資訊,對於其不管在實際應用或是研究上的配方化學是有用的。


    In this study, we develop the characterization method and technique to analyze the biomedical nanomaterials using the gas-phase electrophoretic approach. The mobility size distributions, particle mass distributions, number concentrations and colloid stability of biomedical nanomaterials dispersed in colloid can be successfully characterized by electrospray-differential mobility analyzer (ES-DMA) and aerosol particle mass analyzer (APM). Based on the change of the materials properties shown above, we can investigate the reactions and its kinetics occurring in solution.
    In the first part of this work, we report a facile, high-resolution approach to quantitatively characterize hyaluronic acid (HA) and study its crosslinking reaction using electrospray-differential mobility analysis (ES-DMA). Mobility size distributions, number concentrations, molecular mass distributions and polydispersity index of HAs were able to be successfully characterized by ES-DMA. Size exclusion chromatography (SEC) was employed as an orthogonal approach, showing that averaged molecular mass and polydispersity index of HA measured by ES-DMA were close to the results of SEC on a semi-quantitative basis. The 1,4-butanediol diglycidyl ether (BDDE)-induced crosslinking of HA was also able to be successfully characterized through a time-dependent study. Both the extent and the rate of HA-crosslinking (induced by BDDE) were proportional to reaction temperature and concentration ratio of HA to BDDE. The activation energy of the BDDE-induced crosslinking of HA was found to be ≈21 kJ/mol. The prototype study demonstrates ES-DMA as a new method for a rapid quantitative characterization of HA and its derivative product and providing a capability of real-time monitoring of the HA-crosslinking during formulation process.
    In the second part of this work, we characterize the mobility size distributions and particle mass distributions of metal-organic framework (MOF) before and after the drug loading using ES-DMA and APM. The loading capacity, structural stability, and ibuprofen release can be obtained through this methodology. A successful quantification of ibuprofen loading in UiO-66-NH2 (i.e., the representative drug molecule and MOF, respectively) achieved based on the aerosol particle mass of MOF measured by ES-DMA/APM (≈55 mg of ibuprofen/g of UiO-66-NH2). Structural stability of UiO-66-NH2 versus ibuprofen release was successfully quantified over a 7-day period in an acidic phosphate buffer solution. The methodology provides a proof-of-concept scheme for controlled release studies of different types of active pharmaceutical ingredient from a variety of MOF-based nanocarrier systems.
    This study demonstrates a facile methodology to determine some important factors of biomedical nanomaterials, which can be useful for formulation process in practical and research applications.

    摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 IX 第1章 緒論 1 1-1 分散型奈米材料 1 1-2 生醫奈米材料 2 1-3 玻尿酸 (Hyaluronic acid, HA) 3 1-4 金屬-有機框架 (Metal−Organic framework, MOF) 5 1-5 傳統玻尿酸量測分析方法與所遇到之困難 7 1-6 MOF 在藥物制放之應用與量測方法之挑戰 8 1-7 研究方法與目的 11 第2章 實驗方法 13 2-1 實驗藥品 13 2-2 樣品製備方式 15 2-2.1 HA 膠體溶液之製備 15 2-2.2 BDDE 和 HA 之交聯反應 16 2-2.3 製備 MOF 膠體溶液 17 2-2.4 製備 Ibu@MOF 18 2-3 實驗儀器 19 2-4 實驗儀器原理及方法 21 2-4.1 電噴灑式氣相奈米粒子電移動度分析儀 (ES-DMA) 21 2-4.2 粒徑篩析層析法-多角度光散射 (SEC-MALS) 23 2-4.3 氣溶膠粒子重量分析儀 (APM) 24 2-4.4 穿隧式電子顯微鏡 (TEM) 與靜電集塵器 26 2-4.5 熱重分析法 (TGA) 26 2-4.6 X光繞射分析法 (XRD) 27 2-4.7 表面積與孔隙度分析儀 27 2-4.8 Zeta 電位分析儀 28 第3章 結果與討論 29 3-1 以氣相電泳方法鑑定玻尿酸與其交聯 29 3-1.1 鑑定 HA 的電移動度粒徑分佈與其數量濃度 29 3-1.2 鑑定 HA 的分子量分佈 32 3-1.3 鑑定 HA 和 BDDE 的交聯反應 37 3-2 以氣相電泳法鑑定 MOF 在擔載藥物之應用 44 3-2.1 UiO-66-NH2 在擔載藥物前後之材料分析 44 3-2.2 UiO-66-NH2 在模擬體液環境下之穩定性與釋放藥物之情形 50 第4章 結論 57 第5章 未來展望 58 第6章 參考文獻 62

    1. Pettibone JM, Gigault J, Hackley VA. Discriminating the states of matter in metallic nanoparticle transformations: What are we missing? ACS Nano. 2013;7:2491-2499.
    2. Felix C, Yaroshchuk A, Pasupathi S, Pollet BG, Bondarenko MP, Kovalchuk VI, Zholkovskiy EK. Electrophoresis and stability of nano-colloids: History, theory and experimental examples. Adv Colloid Interface Sci. 2014;211:77-92.
    3. Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364:64-75.
    4. Wong IY, Bhatia SN, Toner M. Nanotechnology: Emerging tools for biology and medicine. Genes Dev. 2013;27:2397-2408.
    5. He Q, Shi J, Chen F, Zhu M, Zhang L. An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials. 2010;31:3335-3346.
    6. Al-Jamal WT, Kostarelos K. Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res. 2011;44:1094-1104.
    7. Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:340315.
    8. Wang L, Zheng M, Xie ZG. Nanoscale metal-organic frameworks for drug delivery: A conventional platform with new promise. J Mater Chem B. 2018;6:707-717.
    9. Huang D, Chen YS, Rupenthal ID. Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery to the retina. Mol Pharm. 2017;14:533-545.
    10. Wu MX, Yang YW. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017;29:1606134.
    11. Highley CB, Prestwich GD, Burdick JA. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol. 2016;40:35-40.
    12. Zhang Z, Christopher GF. The nonlinear viscoelasticity of hyaluronic acid and its role in joint lubrication. Soft Matter. 2015;11:2596-2603.
    13. Neuman MG, Nanau RM, Oruna-Sanchez L, Coto G. Hyaluronic acid and wound healing. J Pharm Pharm Sci. 2015;18:53-60.
    14. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41-H56.
    15. De Boulle K, Glogau R, Kono T, Nathan M, Tezel A, Roca-Martinez JX, Paliwal S, Stroumpoulis D. A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol Surg. 2013;39:1758-1766.

    16. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444.
    17. Lee YR, Kim J, Ahn WS. Synthesis of metal-organic frameworks: A mini review. Korean J Chem Eng. 2013;30:1667-1680.
    18. Sindoro M, Yanai N, Jee AY, Granick S. Colloidal-sized metal-organic frameworks: Synthesis and applications. Acc Chem Res. 2014;47:459-469.
    19. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Ferey G, Couvreur P, Gref R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9:172-178.
    20. Morris W, Wang S, Cho D, Auyeung E, Li P, Farha OK, Mirkin CA. Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal-organic framework. ACS Appl Mater Interfaces. 2017;9:33413-33418.
    21. Piscopo CG, Polyzoidis A, Schwarzer M, Loebbecke S. Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications. Micropor Mesopor Mat. 2015;208:30-35.
    22. Rojas S, Colinet I, Cunha D, Hidalgo T, Salles F, Serre C, Guillou N, Horcajada P. Toward understanding drug incorporation and delivery from biocompatible metal-organic frameworks in view of cutaneous administration. ACS Omega. 2018;3:2994-3003.
    23. Orellana-Tavra C, Marshall RJ, Baxter EF, Lazaro IA, Tao A, Cheetham AK, Forgan RS, Fairen-Jimenez D. Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphizationt. J Mater Chem B. 2016;4:7697-7707.
    24. Yang F, Huang HL, Wang XY, Li F, Gong YH, Zhong CL, Li JR. Proton conductivities in functionalized UiO-66: Tuned properties, thermogravimetry mass, and molecular simulation analyses. Cryst Growth Des. 2015;15:5827-5833.
    25. Shanmuga Doss S, Bhatt NP, Jayaraman G. Improving the accuracy of hyaluronic acid molecular weight estimation by conventional size exclusion chromatography. J Chromatogr B. 2017;1060:255-261.
    26. Kenne L, Gohil S, Nilsson EM, Karlsson A, Ericsson D, Helander Kenne A, Nord LI. Modification and cross-linking parameters in hyaluronic acid hydrogels—Definitions and analytical methods. Carbohydr Polym. 2013;91:410-418.
    27. Kim B, Woo S, Park YS, Hwang E, Moon MH. Ionic strength effect on molecular structure of hyaluronic acid investigated by flow field-flow fractionation and multiangle light scattering. Anal Bioanal Chem. 2015;407:1327-1334.
    28. Volpi N. On-line HPLC/ESI-MS separation and characterization of hyaluronan oligosaccharides from 2-mers to 40-mers. Anal Chem. 2007;79:6390-6397.
    29. Lv JM, Lu SQ, Liu ZP, Zhang J, Gao BX, Yao ZY, Wu YX, Potempa LA, Ji SR, Long M, Wu Y. Conformational folding and disulfide bonding drive distinct stages of protein structure formation. Sci Rep. 2018;8:1494.
    30. Gaborieau M, Castignolles P. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides. Anal Bioanal Chem. 2011;399:1413-1423.
    31. Schante CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohyd Polym. 2011;85:469-489.
    32. Mendichi R, Schieroni AG, Grassi C, Re A. Characterization of ultra-high molar mass hyaluronan: 1. Off-line static methods. Polymer. 1998;39:6611-6620.
    33. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: An updated review. Int J Pharm Investig. 2012;2:2-11.
    34. Zhuang J, Young AP, Tsung CK. Integration of biomolecules with metal-organic frameworks. Small. 2017;13:1700880.
    35. Cunha D, Ben Yahia M, Hall S, Miller SR, Chevreau H, Elkaim E, Maurin G, Horcajada P, Serre C. Rationale of drug encapsulation and release from biocompatible porous metal-organic frameworks. Chem Mater. 2013;25:2767-2776.
    36. Lu W, Wei Z, Gu ZY, Liu TF, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle T, 3rd, Bosch M, Zhou HC. Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev. 2014;43:5561-5593.
    37. Horcajada P, Surble S, Serre C, Hong DY, Seo YK, Chang JS, Greneche JM, Margiolaki I, Ferey G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun. 2007:2820-2822.
    38. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regi M, Sebban M, Taulelle F, Ferey G. Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc. 2008;130:6774-6780.
    39. Sun KK, Li L, Yu XL, Liu L, Meng QT, Wang F, Zhang R. Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs. J Colloid Interface Sci. 2017;486:128-135.
    40. Taherzade SD, Soleimannejad J, Tarlani A. Application of metal-organic framework nano-MIL-100(Fe) for sustainable release of doxycycline and tetracycline. Nanomaterials. 2017;7:215.
    41. Zhao HX, Zou Q, Sun SK, Yu CS, Zhang XJ, Li RJ, Fu YY. Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery. Chem Sci. 2016;7:5294-5301.
    42. Lai YC, Kung CW, Su CH, Ho KC, Liao YC, Tsai DH. Metal-organic framework colloids: Disassembly and deaggregation. Langmuir. 2016;32:6123-6129.

    43. Abanades Lazaro I, Haddad S, Sacca S, Orellana-Tavra C, Fairen-Jimenez D, Forgan RS. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem. 2017;2:561-578.
    44. Teplerisky MH, Fantham M, Li P, Wang TC, Mehta JP, Young LJ, Moghadam PZ, Hupp JT, Farha OK, Kaminski CF, Fairen-Jimenez D. Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release. J Am Chem Soc. 2017;139:7522-7532.
    45. Roda B, Marassi V, Zattoni A, Borghi F, Anand R, Agostoni V, Gref R, Reschiglian P, Monti S. Flow field-flow fractionation and multi-angle light scattering as a powerful tool for the characterization and stability evaluation of drug-loaded metal-organic framework nanoparticles. Anal Bioanal Chem. 2018;410:5245-5253.
    46. Xu X, Wang C, Li H, Li X, Liu B, Singh V, Wang S, Sun L, Gref R, Zhang J. Evaluation of drug loading capabilities of gamma-cyclodextrin-metal organic frameworks by high performance liquid chromatography. J Chromatogr A. 2017;1488:37-44.
    47. Zheng HQ, Zhang YN, Liu LF, Wan W, Guo P, Nystrom AM, Zou XD. One-pot synthesis of metal organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc. 2016;138:962-968.
    48. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C. Metal-organic frameworks in biomedicine. Chem Rev. 2012;112:1232-1268.
    49. Tsai DH, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir. 2011;27:9302-9313.
    50. Tsai DH, DelRio FW, Keene AM, Tyner KM, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir. 2011;27:2464-2477.
    51. Sun WL, Li HB, Li HM, Li S, Cao XQ. Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: Batch experiment and DFT calculation. Chem Eng J. 2019;360:645-653.
    52. Tsai DH, Elzey S, Delrio FW, Keene AM, Tyner KM, Clogston JD, Maccuspie RI, Guha S, Zachariah MR, Hackley VA. Tumor necrosis factor interaction with gold nanoparticles. Nanoscale. 2012;4:3208-3217.
    53. Pease LF, 3rd, Tsai DH, Brorson KA, Guha S, Zachariah MR, Tarlov MJ. Physical characterization of icosahedral virus ultra structure, stability, and integrity using electrospray differential mobility analysis. Anal Chem. 2011;83:1753-1759.

    54. Bacher G, Szymanski WW, Kaufman SL, Zollner P, Blaas D, Allmaier G. Charge-reduced nano electrospray ionization combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses. J Mass Spectrom. 2001;36:1038-1052.
    55. Pease LF, 3rd, Elliott JT, Tsai DH, Zachariah MR, Tarlov MJ. Determination of protein aggregation with differential mobility analysis: Application to IgG antibody. Biotechnol Bioeng. 2008;101:1214-1422.
    56. Tai JT, Lai CS, Ho HC, Yeh YS, Wang HF, Ho RM, Tsai DH. Protein-silver nanoparticle interactions to colloidal stability in acidic environments. Langmuir. 2014;30:12755-12764.
    57. Chang WC, Tai JT, Wang HF, Ho RM, Hsiao TC, Tsai DH. Surface PEGylation of silver nanoparticles: Kinetics of simultaneous surface dissolution and molecular desorption. Langmuir. 2016;32:9807-9815.
    58. Lian XZ, Huang YY, Zhu YY, Fang Y, Zhao R, Joseph E, Li JL, Pellois JP, Zhou HC. Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy. Angew Chem Int Edit. 2018;57:5725-5730.
    59. Bai Y, Dou YB, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem Soc Rev. 2016;45:2327-2367.
    60. Wiedensohler A. An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci. 1988;19:387-389.
    61. Guha S, Li M, Tarlov MJ, Zachariah MR. Electrospray-differential mobility analysis of bionanoparticles. Trends Biotechnol. 2012;30:291-300.
    62. Li MD, Guha S, Zangmeister R, Tarlov MJ, Zachariah MR. Quantification and compensation of nonspecific analyte aggregation in electrospray sampling. Aerosol Sci Technol. 2011;45:849-860.
    63. Li M, Guha S, Zangmeister R, Tarlov MJ, Zachariah MR. Method for determining the absolute number concentration of nanoparticles from electrospray sources. Langmuir. 2011;27:14732-14739.
    64. Elzey S, Tsai DH, Yu LL, Winchester MR, Kelley ME, Hackley VA. Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Anal Bioanal Chem. 2013;405:2279-2288.
    65. Mulholland GW, Donnelly MK, Hagwood CR, Kukuck SR, Hackley VA, Pui DYH. Measurement of 100 nm and 60 nm particle standards by differential mobility analysis. J Res Natl Inst Stan. 2006;111:257-312.
    66. Hong P, Koza S, Bouvier ESP. A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr R T. 2012;35:2923-2950.
    67. Ehara K, Hagwood C, Coakley KJ. Novel method to classify aerosol particles according to their mass-to-charge ratio - aerosol particle mass analyser. J Aerosol Sci. 1996;27:217-234.
    68. Tajima N, Fukushima N, Ehara K, Sakurai H. Mass range and optimized operation of the aerosol particle mass analyzer. Aerosol Sci Tech. 2011;45:196-214.
    69. Lall AA, Ma XF, Guha S, Mulholland GW, Zachariah MR. Online nanoparticle mass measurement by combined aerosol particle mass analyzer and differential mobility analyzer: Comparison of theory and measurements. Aerosol Sci Technol. 2009;43:1075-1083.
    70. Lee SY, Widiyastuti W, Tajima N, Iskandar F, Okuyama K. Measurement of the effective density of both spherical aggregated and ordered porous aerosol particles using mobility- and mass-analyzers. Aerosol Sci Technol. 2009;43:136-144.
    71. Nguyen TP, Chang WC, Lai YC, Hsiao TC, Tsai DH. Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses. Anal Bioanal Chem. 2017;409:5933-5941.
    72. Guha S, Ma X, Tarlov MJ, Zachariah MR. Quantifying ligand adsorption to nanoparticles using tandem differential mobility mass analysis. Anal Chem. 2012;84:6308-6311.
    73. Tsai DH, DelRio FW, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA. Competitive adsorption of thiolated polyethylene glycol and mercaptopropionic acid on gold nanoparticles measured by physical characterization methods. Langmuir. 2010;26:10325-10333.
    74. Berg JC. An introduction to interfaces & colloids : The bridge to nanoscience. Singapore: World Scientific; 2010.
    75. Tai JT, Lai YC, Yang JH, Ho HC, Wang HF, Ho RM, Tsai DH. Quantifying nanosheet graphene oxide using electrospray-differential mobility analysis. Anal Chem. 2015;87:3884-3889.
    76. Tsai DH, Cho TJ, DelRio FW, Gorham JM, Zheng J, Tan J, Zachariah MR, Hackley VA. Controlled formation and characterization of dithiothreitol-conjugated gold nanoparticle clusters. Langmuir. 2014;30:3397-3405.
    77. Malm L, Hellman U, Larsson G. Size determination of hyaluronan using a gas-phase electrophoretic mobility molecular analysis. Glycobiology. 2012;22:7-11.
    78. Weiss VU, Golesne M, Friedbacher G, Alban S, Szymanski WW, Marchetti-Deschmann M, Allmaier G. Size and molecular weight determination of polysaccharides by means of nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA). Electrophoresis. 2018;39:1142-1150.

    79. Wasiak I, Kulikowska A, Janczewska M, Michalak M, Cymerman IA, Nagalski A, Kallinger P, Szymanski WW, Ciach T. Dextran nanoparticle synthesis and properties. Plos One. 2016;11:e0146237.
    80. 葉昕. 以氣相電泳法探討金屬-有機框架奈米材料之穩定性作為複合式奈米材料的應用. 碩士論文. 2018, 國立清華大學: 化學工程學系.
    81. Cunha D, Gaudin C, Colinet I, Horcajada P, Maurin G, Serre C. Rationalization of the entrapping of bioactive molecules into a series of functionalized porous zirconium terephthalate MOFs. J Mater Chem B. 2013;1:1101-1108.
    82. Katz MJ, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun. 2013;49:9449-9451.
    83. Chen YP, Mu XL, Lester E, Wu T. High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity. Prog Nat Sci-Mater. 2018;28:584-589.
    84. Matsuyama K, Hayashi N, Yokomizo M, Kato T, Ohara K, Okuyama T. Supercritical carbon dioxide-assisted drug loading and release from biocompatible porous metal-organic frameworks. J Mater Chem B. 2014;2:7551-7558.
    85. Horvath G, Kawazoe K. Method for the calculation of effective pore-size distribution in molecular-sieve carbon. J Chem Eng Jpn. 1983;16:470-475.
    86. Orellana-Tavra C, Haddad S, Marshall RJ, Lazaro IA, Boix G, Imaz I, Maspoch D, Forgan RS, Fairen-Jimenez D. Tuning the endocytosis mechanism of Zr-based metal-organic frameworks through linker functionalization. ACS Appl Mater Interfaces. 2017;9:35516-35525.
    87. Wang HL, Yeh H, Chen YC, Lai YC, Lin CY, Lu KY, Ho RM, Lo BH, Lin CH, Tsai DH. Thermal stability of metal-organic frameworks and encapsulation of CuO nanocrystals for highly active catalysis. ACS Appl Mater Interfaces. 2018;10:9332-9341.
    88. Chang WC, Cheng SC, Chiang WH, Liao JL, Ho RM, Hsiao TC, Tsai DH. Quantifying surface area of nanosheet graphene oxide colloid using a gas-phase electrostatic approach. Anal Chem. 2017;89:12217-12222.

    QR CODE