研究生: |
簡佑良 Yu-Liang Chien |
---|---|
論文名稱: |
錐度量空間上的Korovkin 型近似定理 Korovkin-type Approximation Theorems On Cone Metric Space |
指導教授: | 陳正忠 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 7 |
中文關鍵詞: | Korovkin 型近似定理 、錐度量空間 、正線性算子 |
外文關鍵詞: | Korovkin-type Approximation Theorems, cone metric space, linear positive operator |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
令{Ln}為作用在定義於度量空間上之實數值函數所形成空間之正線性算子的序列,我們討論{Ln}在Korovkin 型近似定理中成立的某種充分條件,並且我們將證明Korovkin 型近似定理,其中{Ln}為定義於錐度量空間上之實數值函數所形成空間之正線性算子的序列。
Let {Ln} be a sequence of positive linear operators on the real-valued function space defined on a metric space, we discuss some kinds of suffcient condition on {Ln} to the Korovkin-type Approximation Theorems , and then prove the Korovkin-type Approximation Theorems with Ln on a real-valued function space defined on a cone metric spaces for all n belong to N.
[1] H. Aktuglu, M. A. Ozarslan, and O. Duman , Matrix Summability Methods on the approximation of Multivariate q-MKZ operators, Bull. Malaysian Math. Sci. Soc. (2), accepted.
[2] F. Altomare, Korovkin-type Theorems and Approximation by Positive Linear Operators, Surveys in Approximation Theory, 5 (2010), 92-164.
[3] F. Altomare and S. Diomede, Positive Operators and approximation in function spaces on completely regular spaces, Int. J. of Math. and Math. Sci., 61 (2003), 3841-
3871.
[4] S. N. Bernstein, Demostration du theoreme de Weierstrass fondee sur le calcul de probabilites, Comm. Soc. Math. Kharkow (2), 13, 1912-1913, 1-2.
[5] S. Karakus, K. Demirci, O. Duman, Equi-statistical convergence of positive linear operators, J. Math. Anl. Appl., 339 (2008) 1065-1072.
[6] P. P. Korovkin, Linear Operators and Approximation Theory, Translated from the Russian Edition, 1959.
[7] H. Long-Gung, Z. Xian, Cone metric spaces and fxed point theorms of contractive mapping, J. Math. Anl. Appl., 332 (2007) 1468-1476.
[8] R. F. Patterson and E. Sava, Korovkin and Weierstrass Approximation via Lacunary Statistical Sequences, J. Math. Stat., 1 (2005) 165-167.
[9] M. A. Ozarslan, O. Duman, Approximation theorems by Meyer-Konig and Zeller type operators, Chaos, Solitons and Fractals, 41 (2009) 451-456.