簡易檢索 / 詳目顯示

研究生: 林王智瑞
Lin Wang, Chih Jui
論文名稱: 考慮時間序列社會網絡資料之隱私資訊匿名化
Multiple Release Anonymization for Time-Series Social Network Data
指導教授: 陳良弼
Chen, L. P.
口試委員: 陳良弼
顏秀珍
柯佳伶
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 38
中文關鍵詞: 隱私性社會網絡匿名化時間序列
外文關鍵詞: Privacy, Social Networks, Anonymization, Time-Series
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今,社會網絡在世界中越來越流行並受到注視。社會網絡中包含許多個體之間的互動資訊,而這些資訊中可能包含具隱私性的內容。因此,為了保護社會網路中的隱私性資訊,許多相關的匿名化方法已經被提出。在之前的研究中,只注重開發針對單一社會網絡中的隱私性資訊進行防護並發布單一個匿名化後的圖形的匿名化方法。不過,提供單一個匿名化後的圖形資料,可能不足以分析整個社會網絡的演進。所以,在這邊論文我們要解決如何對一時間序列社會網絡資料中的隱私性互動關係進行防護,並發布這段時間序列中多個不同時間點的匿名化後的社會網絡資料。我們指出利用現存的匿名化方法去分別產生並發布不同時間點的匿名化後的社會網絡資料,可能會發生隱私性資訊遭到惡意攻擊者透過觀察發布的多筆不同時間點匿名化後的社會網絡資料而被輕易揭露。因此,我們提供了一個匿名方法,考慮如何對一時間序列的社會網絡資料,同時發布這段時間內多個不同時間點的匿名化後的社會網絡,並保障其隱私性的內容不會輕易的被揭露。我們在論文中詳細介紹我們的實驗步驟,並透過回答一系列的聚合查詢來評估這些匿名化後的社會網絡資料的實用性。實驗結果顯示,透過我們設計的匿名化方法所產生的多個不同時間點的匿名化後的社會網路資料,用來回答查詢能有準確的查詢結果。


    Nowadays, social networks have gained popularity among the world. Social networks have a lot of data about interaction among entities and these data may contain the individual privacy content. Accordingly, many studies have been proposed to protect the privacy in social networks. The previous works only focus on developing the privacy preserving methods for releasing a single anonymized graph used to represent a social network. However, the single anonymized graph may not be enough for analyzing the evolution of the whole network. Therefore, we address a novel problem of preserving the privacy of interaction among entities for multiple releases on time-series social network data in this thesis, which means we will release multiple anonymized graphs to represent a social network with time-series data. We point out that the privacy may be revealed across the multiple releases, if we apply the existing methods to generate the individual anonymized graph for the network in the different timestamps. We provide an anonymization method for releasing multiple anonymized graphs at one time on time-series social network data. We detail our experiment steps and evaluate the utility of the anonymized graphs by answering a series of aggregate queries. The results show that the multiple releases generated by our method answer the queries accurately.

    Acknowledgement i Abstract ii Table of Contents iii List of Figures iv 1. Introduction 1 2. Related Works 4 3. Preliminaries 6 3.1 Social Network Model 6 3.2 Problem Formulation 7 4. Anonymization for Single Graph 9 4.1 Anonymization with single graph 9 4.2 Privacy Revealed across Multiple Releases 12 5. Anonymizing Method 18 5.1 Time-Series Class Safety Condition 18 5.2 Anonymizing Method for Time-Series Social Network Data 19 5.3 The Security of Multiple Releases 23 6. Experiments 25 6.1 Measuring the Utilities 25 6.2 Querying Anonymized Data 26 6.3 Experiment Setup 26 6.4 Experiment Results 28 7. Conclusions 35 References 36

    [BC09] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava, “Class-based graph anaonymization for social network data,” In Proceedings of the 35th International Conference on Very Large Data Base, pp. 766-777, 2009.
    [BD07] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography,” In Proceedings of the 16th International Conference on World Wide Web, pp. 181-190, 2007.
    [BH06] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group formation in large social networks: membership, growth, and evolution,” In KDD '06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge discovery and data mining, pp. 44–54, New York, NY, USA, 2006.
    [BS06] T. Y. Berger-Wolf and J. Saia, “A framework for analysis of dynamic social networks,” In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 523–528, Philadelphia, PA, USA, 2006.
    [CS08] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang, “Anonymizing bipartite graph data using safe groupings,” In Proceedings of the 34th International Conference on Very Large Data Base, pp. 833-844,2008.
    [CT08] A. Campan and T. M. Truta, “A clustering approach for data and structural anonymity in social networks,” In Proceedings of the 2nd ACM SIGKDD International Workshop on Privacy, Security, and Trust in KDD(PinKDD'08), in Conjunction with KDD'08, Las Ve-gas, Nevada, USA, 2008.
    [HM07] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava, “Anonymizing social networks,” University of Massachusetts Technical Report, 07-19, 2007.
    [HM08] M. Hay, G. Miklau, D. Jensen, D. Towsely, and P. Weis, “Resisting structural re-identification in anonymized social networks,” In Proceedings of the 34th International Conference on Very Large Data Base, pp. 102-114, 2008.
    [K07] J. M. Kleinberg, “Challenges in mining social network data: processes, privacy, and paradoxes,” In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge discovery and data mining, pp. 4-5, 2007.
    [KK03] D. Kempe, J. M. Kleinberg, and «E. Tardos, “Maximizing the spread of influence through a social network,” In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge discovery and data mining, pp. 137–146, 2003.
    [LD08] K. Liu, K. Das, T. Grandison, and H. Kargupta, “Privacy-preserving data analysis on graphs and social networks,” In Next Generation Data Mining. Chapter 21, pp. 419-437, Edited by Hillol Kargupta, Jiawei Han, Philip Yu, Rajeev Motwani, and Vipin Kumar, CRC Press, December 2008.
    [LL09] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters,” University of Massachusetts Technical Report, Internet Mathematics 6(1) 29-123, 2009.
    [LT08] K. Liu and E. Terzi, “Towards identity anonymization on graphs,” In Proceedings of the 2008 ACM SIGMOD International Conference on Management of data, pp. 93-106, 2008.
    [MG06] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, “l-diversity: privacy beyond k-anonymity,” In Proceedings of the 22nd IEEE International Conference on Data Engineering, pp. 24, 2006.
    [MK08] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel and B. Bhattacharjee, “Growth of the Flickr social network,” In Proceedings of the 1th ACM SIGCOMM Workshop on Online Social Networks, pp. 25-30, 2008.
    [WY10] X. Wu, X. Ying, K. Liu, and L. Chen., "A Survey of Privacy‐Preservation of Graphs and Social Networks," in Managing and Mining Graph Data. vol. 40, C. C. Aggarwal and H. Wang, Eds., ed: Springer US, pp. 421‐453, 2010.
    [YC10] M. Yuan, L. Chen, and P. Yu, “Personalized privacy protection in social networks,” In Proceedings of the 37th International Conference on Very Large Data Base, pp. 141-150, 2010.
    [ZC09] L. Zou, L. Chen, and M. T. Ozsu, “K-automorphism: A general framework for privacy preserving network publication,” In Proceedings of the 35th International Conference on Very Large Data Base, pp. 946-957, 2009.
    [ZG07] E. Zheleva and L. Getoor, “Preserving the privacy of sensitive relationships in graph data,” In Proceedings of the First ACM SIGKDD International Workshop on Privacy, Security, and Trusting KDD, SanJose, California, pp. 153-171, Aug 2007.
    [ZP08] B. Zhou and J. Pei, “Preserving privacy in social networks against neighborhood attacks, ” In Proceedings of the 24th IEEE International Conference on Data Engineering, pp. 506–515, 2008.
    [ZP09] B. Zhou, J. Pei, and W.-S. Luk, “A brief survey on anonymization techniques for privacy preserving publishing of social network data,” In Proceedings of the SIGKDD Explorations, 12-22, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE