簡易檢索 / 詳目顯示

研究生: 吳小卿
Ngo, Tieu-Khanh
論文名稱: 多環芳烴分子在金屬表面上的掃描探針研究
Scanning probe studies of polycyclic aromatics hydrocarbons molecules on metallic surfaces
指導教授: 霍夫曼
Germar, Hoffmann
口試委員: 唐述中
TANG, SHU-JUNG
林俊良
LIN, Chun-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 48
中文關鍵詞: 多環芳烴分子
外文關鍵詞: aromatics hydrocarbons molecules, Scanning probe studies
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用場效晶體管及發光二極管來製作井然有序介面之有機分子,開發井然有序的分子薄膜和納米結構高度依賴於有機分子的自序性[9],[23]。本論文採用超高真空低溫掃描隧道顯微鏡,研究了多環芳烴2,5,8,11,14,17-hexabromo hexabenzocoronene (Br6HBC) 和3,10-Bis(Bromo-Methyl) Phenacene (3,10 BMP)在金屬基材上的沉積、自組和形成。我們可以通過將多環芳烴分子蒸發到Au(111) 上來獲得化學結構和電子特性。Ag(111)上3,10個BMP分子的參數代表了各種自組。每種配置都表現出獨特的電氣特性,並具有額外的局部狀態。產生武茲反應在熱處理後在金屬表面上形成聚合物。


    When using organic molecules in devices such as field-effect transistors and light-emitting diodes, well-ordered interfaces are required. Developing ordered molecular thin films and nanostructures highly depends on the self-ordering of organic molecules[9],[23]. This thesis studied the deposition, self-assembly, and network formation of 2,5,8,11,14,17-hexabromo hexabenzocoronene (Br6HBC) and 3,10-Bis(Bromo-Methyl)-[5]Phenacene (3,10 BMP) molecules on metallic substrates by using the ultrahigh-vacuum low-temperature scanning tunneling microscope.We can obtain the chemical structure and electronic properties by evaporating Br6HBC molecules onto the Au(111). The preparation parameter of 3,10 BMP molecules on Ag(111) represents the self-assembly of various kinds. Every configuration
    exhibits unique electrical characteristics and has additional localized states. The well-known Wurtz coupling reaction is created to form polymers on a metal surface after thermal treatment.

    Abstract ii Acknowledgements iii Introduction 3 1 Instrumentation 5 1.1 OMICRON STM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 Load lock and Turbo pump chamber . . . . . . . . . . . . . 6 1.1.2 Preparation chamber 1 . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Preparation 2 and STM chamber . . . . . . . . . . . . . . . 6 1.1.4 Molecule evaporator . . . . . . . . . . . . . . . . . . . . . . 7 1.1.5 Probe preparation . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.6 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 UNISOKU STM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.1 Load-lock chamber . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.2 Preparation chamber . . . . . . . . . . . . . . . . . . . . . . 12 1.2.3 STM chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Theory 14 2.1 Scanning Tunneling Microscope . . . . . . . . . . . . . . . . . . . . 14 2.2 Quantum tunneling in 1D . . . . . . . . . . . . . . . . . . . . . . . 15 3 Experiment 17 3.1 Quartz crystal testing . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 2,5,8,11,14,17-hexabromo-hexabenzocoronene . . . . . . . . . . . . . 20 3.2.1 Molecule characteristic . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 Molecule preparation . . . . . . . . . . . . . . . . . . . . . . 21 3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 3,10-Bis(Bromo-Methyl)-[5]Phenacene . . . . . . . . . . . . . . . . . 27 3.3.1 Molecule characteristic . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 Molecule preparation . . . . . . . . . . . . . . . . . . . . . . 28 3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Summary 43 Bibliography 45

    [1] BV Andryushechkin, VV Cherkez, B Kierren, Y Fagot-Revurat, D Malterre,
    and KN Eltsov. Commensurate-incommensurate phase transition in chlorine
    monolayer chemisorbed on ag (111): direct observation of crowdion condensation
    into a domain-wall fluid. Physical Review B, 84(20):205422, 2011.
    [2] Marco Bieri, Matthias Treier, Jinming Cai, Kamel Ait-Mansour, Pascal
    Ruffieux, Oliver Gr¨oning, Pierangelo Gr¨oning, Marcel Kastler, Ralph Rieger,
    Xinliang Feng, et al. Porous graphenes: two-dimensional polymer synthesis
    with atomic precision. Chemical communications, (45):6919–6921, 2009.
    [3] Thai Thanh Thu Bui, Slimane Dahaoui, Claude Lecomte, Gautam R Desiraju,
    and Enrique Espinosa. The nature of halogen interactions: A model
    derived from experimental charge-density analysis. Angewandte Chemie,
    121(21):3896–3899, 2009.
    [4] Jinming Cai, Pascal Ruffieux, Rached Jaafar, Marco Bieri, Thomas Braun,
    Stephan Blankenburg, Matthias Muoth, Ari P Seitsonen, Moussa Saleh, Xinliang
    Feng, et al. Atomically precise bottom-up fabrication of graphene
    nanoribbons. Nature, 466(7305):470–473, 2010.
    [5] Tom Carpy. A scanning tunnelling microscopy and spectroscopic study of
    bromine functionalised molecules on metal surfaces. PhD thesis, Dublin City
    University, 2015.
    [6] Julian Chen. Introduction to Scanning Tunneling Microscopy Third Edition,
    volume 69. Oxford University Press, USA, 2021.
    [7] AM van de Craats, JM Warman, Andreas Fechtenk¨otter, J Dietrich Brand,
    MA Harbison, and Klaus M¨ullen. Record charge carrier mobility in a roomtemperature
    discotic liquid-crystalline derivative of hexabenzocoronene. Advanced
    Materials, 11(17):1469–1472, 1999.
    [8] Shiro Entani, Toshihiko Kaji, Susumu Ikeda, Tomohiko Mori, Yoshihiro
    Kikuzawa, Hisato Takeuchi, and Koichiro Saiki. Fluorine substitution of
    hexa-peri-hexabenzocoronene: Change in growth mode and electronic structure.
    The Journal of Physical Chemistry C, 113(15):6202–6207, 2009.
    [9] Stephen R Forrest. Ultrathin organic films grown by organic molecular beam
    deposition and related techniques. Chemical reviews, 97(6):1793–1896, 1997.
    [10] Leonhard Grill. Functionalized molecules studied by stm: motion, switching
    and reactivity. Journal of Physics: Condensed Matter, 20(5):053001, 2008.
    [11] Leonhard Grill, Matthew Dyer, Leif Lafferentz, Mats Persson, Maike V Peters,
    and Stefan Hecht. Nano-architectures by covalent assembly of molecular
    building blocks. Nature nanotechnology, 2(11):687–691, 2007.
    [12] Leo Gross, Francesca Moresco, Pascal Ruffieux, Andr´e Gourdon, Christian
    Joachim, and Karl-Heinz Rieder. Tailoring molecular self-organization by
    chemical synthesis: Hexaphenylbenzene, hexa-peri-hexabenzocoronene, and
    derivatives on cu (111). Physical Review B, 71(16):165428, 2005.
    [13] Akash Gupta. On-surface polymerization. 2021.
    [14] Rico Gutzler, Luis Cardenas, Josh Lipton-Duffin, Mohamed El Garah, Laurentiu
    E Dinca, Csaba E Szakacs, Chaoying Fu, Mark Gallagher, Martin
    Vondr´aˇcek, Maksym Rybachuk, et al. Ullmann-type coupling of brominated
    tetrathienoanthracene on copper and silver. Nanoscale, 6(5):2660–2668, 2014.
    [15] Jonathan P Hill, Wusong Jin, Atsuko Kosaka, Takanori Fukushima, Hideki
    Ichihara, Takeshi Shimomura, Kohzo Ito, Tomihiro Hashizume, Noriyuki
    Ishii, and Takuzo Aida. Self-assembled hexa-peri-hexabenzocoronene
    graphitic nanotube. Science, 304(5676):1481–1483, 2004.
    [16] M Keil, P Samori, DA Dos Santos, T Kugler, Sven Stafstr¨om, JD Brand,
    Klaus M¨ullen, JL Br´edas, JP Rabe, and William R Salaneck. Influence of the
    morphology on the electronic structure of hexa-p eri-hexabenzocoronene thin
    films. The Journal of Physical Chemistry B, 104(16):3967–3975, 2000.
    [17] Hao Lin and Dianqing Sun. Recent synthetic developments and applications
    of the ullmann reaction. a review. Organic preparations and procedures international,
    45(5):341–394, 2013.
    [18] Michael-Schmid. Schematic diagram of a scanning tunneling microscope.
    2005.
    [19] Tomohiko Mori, Hisato Takeuchi, and Hisayoshi Fujikawa. Field-effect transistors
    based on a polycyclic aromatic hydrocarbon core as a two-dimensional
    conductor, 2005.
    [20] Jouko Nieminen, Sakari Lahti, Sami Paavilainen, and Karina Morgenstern.
    Contrast changes in stm images and relations between different tunneling
    models. Physical Review B, 66(16):165421, 2002.
    [21] Ali Rouhanipour, Mainak Roy, Xinliang Feng, Hans Joachim R¨ader, and
    Klaus M¨ullen. Subliming the unsublimable: how to deposit nanographenes.
    Angewandte Chemie, 121(25):4672–4674, 2009.
    [22] Lukas Schmidt-Mende, A Fechtenkotter, K Mullen, Ellen Moons, Richard H
    Friend, and J Devin MacKenzie. Self-organized discotic liquid crystals for
    high-efficiency organic photovoltaics. Science, 293(5532):1119–1122, 2001.
    [23] Samuel I Stupp, Vassou LeBonheur, KWalker, Li-Sheng Li, Kevin E Huggins,
    M Keser, and Amstutz Amstutz. Supramolecular materials: self-organized
    nanostructures. Science, 276(5311):384–389, 1997.
    [24] Yuan-Zhi Tan, Silvio Osella, Yi Liu, Bo Yang, David Beljonne, Xinliang Feng,
    and Klaus M¨ullen. Sulfur-annulated hexa-peri-hexabenzocoronene decorated
    with phenylthio groups at the periphery. Angewandte Chemie, 127(10):2970–
    2974, 2015.
    [25] F. Ullmann and Jean Bielecki. Ueber synthesen in der biphenylreihe. Berichte
    der deutschen chemischen Gesellschaft, 34(2):2174–2185, 1901.
    [26] Yu Zhang, Guangjie Liu, and Wenjing Xu. Recent progress of graphene
    orientation determination technology based on scanning probe microscopy.
    Micro & Nano Letters, 15(8):519–523, 2020.
    [27] U Zimmermann and N Karl. Epitaxial growth of coronene and hexa-peribenzocoronene
    on mos2 (0001) and graphite (0001): a leed study of molecular
    size effects. Surface science, 268(1-3):296–306, 1992.

    QR CODE