研究生: |
施權哲 Cyuan-Jhe Shih |
---|---|
論文名稱: |
在準度量空間上滿足循環梅厄基勒收縮函數之定點定理 Fixed point theorem for the cyclic Meir-Keeler contractions on metric-like spaces. |
指導教授: |
陳啟銘
Chi-Ming Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 26 |
中文關鍵詞: | 固定點定理 、循環梅厄基勒 、準度量空間 |
外文關鍵詞: | Fixed point theorems, cyclic Meir-Keeler, metric-like spaces |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇文章中,通過使用循環和梅厄 - 基勒的函數,並將其合併成在準度量空間中的循環梅厄 - 基勒型收縮型函數
然後在準度量空間中套討此函數是否可以找到固定點
In this article, by using the cyclic represtation and Meir-Keeler type
mappings, we introduce two kinds of cyclic Meir-Keeler type contractions
and then establish some new fixed theorems for these cyclic Meir-Keeler
type contractions defined on a metric-like space X with a cyclic represen
tation of X. Our results generalize and improve many recent fixed point
theorems for generalized cyclic contractive mappings in the literature.
[1] T. Abdeljawad, Fixed points for generalized weakly contractive map
pings in partial metric spaces, Mathematical and Computer Modelling,
vol.54(2011),no.11-12, pp. 2923–2927.
[2] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic
generalized contractions in partial metric spaces, Fixed Point Theory and
Appl. (2012), 2012:40.
[3] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on
partial metric spaces, Fixed Point Theory and Appl. (2011), Article ID
508730, 10 pages, 2011.
[4] A Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points,
Fixed Point Theory and Appl. (2012), Article ID 2012, 2012:204.
[5] H. Aydi, Fixed point results for weakly contractive mappings in ordered
partial metric spaces, Journal of Advanced Mathematical Studies, 4(2011),
no. 2, pp. 1–12.
[6] S. Banach, Sur les op´erations dans les ensembles abstraits et leur applica
tion aux ´equations int´egrales, Fund. Math. 3 (1922) 133–181.
[7] K. P. Chi, E. Karapinar, T. D. Thanh, A generalized contraction prin
ciple in partial metric spaces, Mathematical and Computer Modelling,
55(2012),no. 5-6, pp. 1673–1681.
[8] E. Karapinar, Generalizations of Caristi Kirks theorem on partial metric
spaces, Fixed Point Theory and Applications, vol. 2011, article 4, 2011.
[9] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial
metric spaces, Appl. Math. Inf. Sci. 6 (2012), 239-244.
[10] E. Karapinar, P. Salimi, Dislocated metric space to metric spaces with some
fixed point theorems, Fixed Point Theory and Appl. (2013), 2013:222
[11] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings sat
isfying cyclical contractive conditions, Fixed Point Theory. Vol.4 no.1
(2003), 79-89.
[12] S.G. Mattews, Partial metric topology, Proc. 8th Summer of Conference on
General Topology and Applications, Ann. New York Aced. Sci. 728 (1994)
183–197.
[13] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal.
Appl. 28(1969), 326–329.
[14] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces,
Rend. Istid Math. Univ. Trieste. 36 (2004) 17–26.
[15] I.A. Rus, Cyclic representations and fixed points, Ann. T. Popoviciu, Sem
inar Funct. Eq. Approx. Convexity, 3 171–178 (2005)