簡易檢索 / 詳目顯示

研究生: 施權哲
Cyuan-Jhe Shih
論文名稱: 在準度量空間上滿足循環梅厄基勒收縮函數之定點定理
Fixed point theorem for the cyclic Meir-Keeler contractions on metric-like spaces.
指導教授: 陳啟銘
Chi-Ming Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 26
中文關鍵詞: 固定點定理循環梅厄基勒準度量空間
外文關鍵詞: Fixed point theorems, cyclic Meir-Keeler, metric-like spaces
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇文章中,通過使用循環和梅厄 - 基勒的函數,並將其合併成在準度量空間中的循環梅厄 - 基勒型收縮型函數
    然後在準度量空間中套討此函數是否可以找到固定點


    In this article, by using the cyclic represtation and Meir-Keeler type
    mappings, we introduce two kinds of cyclic Meir-Keeler type contractions
    and then establish some new fixed theorems for these cyclic Meir-Keeler
    type contractions defined on a metric-like space X with a cyclic represen
    tation of X. Our results generalize and improve many recent fixed point
    theorems for generalized cyclic contractive mappings in the literature.

    書名,作者名,摘要----------1 使用的函數及空間的背景-----2 主要成果------------------8 參考文獻-----------------24

    [1] T. Abdeljawad, Fixed points for generalized weakly contractive map
    pings in partial metric spaces, Mathematical and Computer Modelling,
    vol.54(2011),no.11-12, pp. 2923–2927.
    [2] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic
    generalized contractions in partial metric spaces, Fixed Point Theory and
    Appl. (2012), 2012:40.
    [3] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on
    partial metric spaces, Fixed Point Theory and Appl. (2011), Article ID
    508730, 10 pages, 2011.
    [4] A Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points,
    Fixed Point Theory and Appl. (2012), Article ID 2012, 2012:204.
    [5] H. Aydi, Fixed point results for weakly contractive mappings in ordered
    partial metric spaces, Journal of Advanced Mathematical Studies, 4(2011),
    no. 2, pp. 1–12.
    [6] S. Banach, Sur les op´erations dans les ensembles abstraits et leur applica
    tion aux ´equations int´egrales, Fund. Math. 3 (1922) 133–181.
    [7] K. P. Chi, E. Karapinar, T. D. Thanh, A generalized contraction prin
    ciple in partial metric spaces, Mathematical and Computer Modelling,
    55(2012),no. 5-6, pp. 1673–1681.
    [8] E. Karapinar, Generalizations of Caristi Kirks theorem on partial metric
    spaces, Fixed Point Theory and Applications, vol. 2011, article 4, 2011.
    [9] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial
    metric spaces, Appl. Math. Inf. Sci. 6 (2012), 239-244.
    [10] E. Karapinar, P. Salimi, Dislocated metric space to metric spaces with some
    fixed point theorems, Fixed Point Theory and Appl. (2013), 2013:222
    [11] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings sat
    isfying cyclical contractive conditions, Fixed Point Theory. Vol.4 no.1
    (2003), 79-89.
    [12] S.G. Mattews, Partial metric topology, Proc. 8th Summer of Conference on
    General Topology and Applications, Ann. New York Aced. Sci. 728 (1994)
    183–197.
    [13] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal.
    Appl. 28(1969), 326–329.
    [14] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces,
    Rend. Istid Math. Univ. Trieste. 36 (2004) 17–26.
    [15] I.A. Rus, Cyclic representations and fixed points, Ann. T. Popoviciu, Sem
    inar Funct. Eq. Approx. Convexity, 3 171–178 (2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE