研究生: |
官顥叡 Kuan, Hao-Jui |
---|---|
論文名稱: |
雙星併合前中子星的潮汐效應與純量化緊緻物體之動力學 Tidal Effects in Pre-merger Neutron Stars and Dynamics of Scalarized Compact Objects |
指導教授: |
耿朝強
Geng, Chao-Qiang Kokkotas, Kostas Kokkotas, Kostas |
口試委員: |
Santangelo, Andrea
Jochum, Josef Wharam, David Santangelo, Andrea Jochum, Josef Wharam, David Braun, Daniel |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 289 |
中文關鍵詞: | 中子星震盪 、重力波 、磁星 、修正重力理論 |
外文關鍵詞: | neutron star: oscillation, gravitational waves, magnetar, modified gravity |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文的第一部分,我們關注至少一顆中子星參與其中的雙星合併系統內之潮汐效應。在諸多可能的現象中,我們探討中子星中低頻準正規振態---例如$g$模式與$i$模式震盪---的共振可能導致的星震現象;若該中子星的磁場達到磁星的強度,則伴隨的能量釋放可能會引起短伽馬射線脈衝的前導放射。實際上,我們發現短伽馬射線脈衝事件SGRB090510所觀測到的兩個前導脈衝可分別歸因於$g_1$與$g_2$模式共振所產生的星震。換言之,我們可以由前導放射觀測的時間脈絡得知當下雙星運動的軌道頻率,進而推算震盪模式的頻率。我們進一步發現藉由兩個(或以上)前導放射的觀測結果,可以估算中子星的自旋速度。此外,由於目前尚待實際觀測確認的候選核子狀態方程式可以藉由$g$模式震盪的頻率高低被分為三組,因此上述推得的$g$模式震盪之頻率或可對核子狀態方程式提供特定限制。另一方面,$f$模式的震盪可以有效加速併合的進程、誘發「潮汐陷落」的現象,由此產生重力波型的相位差。雖然對於自轉速度不快的中子星而言,潮汐引起的相位差大多是由星體本身形變所導致的,但若中子星快速自轉,其$f$震盪可能導致更大程度的相位差---我們在某些系統中觀察到大約100弧度的相位差。
在論文的第二部分,我們探討非愛因斯坦重力的理論中,中子星及黑洞在強重力環境下的動態行為。在多純量張量理論中,純量化(緊緻)物體的純量場在星體外會以距離平方反比的趨勢減弱(因此脈衝星的觀測數據無法限制此類理論),且穩態星體可被離散地以其拓墣性質來加以分類並以「拓墣荷」來量化描述。對於拓墣荷為零的穩態解,我們發現星體的穩定性在達到最大可能質量前都被保持,因此在某些環境下的吸積現象,可能會將穩定星體的質量增加到不穩定性的閾值,而引發非線性的動態過程---去純量化。星體在此過程中,會迅速縮小,類似於一般物質的相變過程,不過會有伴隨而生的純量重力波。我們也探討可能隨之產生的電磁指標性訊號。除吸積過程外,我們也採用純量張量理論與純量高斯-博內理論來考慮核心塌陷。前者理論中,由於無毛定理,純量化的穩態黑洞並不存在,不過在後者理論的框架下,我們透過數值模發現擬塌陷而成的黑洞在特定理論條件下可以賦有純量場。這是在相對真實的物理過程中,對純量化黑洞生成管道的第一個動態演示。
In the first part of this thesis, we investigate some tidal phenomena in the pre-merger stage of coalescing binaries with at least one neutron star (NS) involved.
Among other things, resonance of low frequency modes (e.g., $g$- and $i$-modes) may result in crustal fracture, whereby unleash the energy used to be stored in the cracked area, possibly constituting a pre-emission of short gamma-ray burst (SGRB) if the NS is highly magnetised. In particular, we find it possible to associate two pre-emissions of SGRB 090510 with the resonantly excited $g_1$- and $g_2$-modes. We present, in addition, that the inferred frequencies of these two $g$-modes provide a novel avenue to estimate the spin of the NS, which can be applied to any SGRB preceded by two or more precursors. This presumably, $g$-mode-related phenomenon can also benefit in constraining the equation of state (EOS) since the EOS candidates can be grouped in terms of $g$-mode frequency.
On the other hand, $f$-mode excitation accelerates the merger course, leading to a ``tidal plunge'' phase; thereby, a phase shift is rendered in the associated gravitational waveform, which dictates the evolutionary track of the binary. Although the adiabatic tide attributes much more to the phase shift than the dynamical ones if the NS rotates slowly, the situation for fast spinning stars is different: a few hundred radiants of shift may be rendered.
The second part of this thesis is dedicated to the study of the dynamics of compact objects, viz.~NSs and black holes (BHs), in alternative gravity theories in the strong gravity regime. In particular, we consider some scalar-involved theories such as the (multi-)scalar-tensor theory and scalar-Gauss-Bonnet theory. In the theory with three scalar fields, the scalar field of static stars dies out in the power of $-2$ of distance, thus not constrained by pulsar experiments, and they are of discrete topological types, characterised by topological charge.
For the zero charge configurations, we show that up to three stable stars exist for a certain range of central energy density, and the stability is lost right at the occurrence of the most massive (either scalarized or non-scalarized) star. Accretions may therefore bring a stable scalarized NS into an unstable state, where a descalarization would be triggered, generating the gravitational phase transition (PT) that mimics well the traditional, material PT while accompanied by scalar-induced gravitational waves (SGWs). Some observational signatures -- both gravitational and electromagnetic -- are discussed.
In addition to the accreting process, we consider the spherically-symmetric core collapse for the scalar-tensor and the scalar-Gauss-Bonnet theories. Although a scalarized BH is absent in the former theory due to no-hair reason, we can construct one in the latter theory. In particular, we numerically demonstrate scalarization in a remnant BH behind stellar collapse, giving a first example on the production channel for scalarized BHs in the scalar-Guass-Bonnet theory.
[1] Hao-Jui Kuan, Christian J. Kru ̈ger, Arthur G. Suvorov, and Kostas D. Kokkotas. Constraining equation of state groups from g-mode asteroseismology. MNRAS, April 2022.
[2] Hao-Jui Kuan, Arthur G. Suvorov, and Kostas D. Kokkotas. General-relativistic treatment of tidal g-mode resonances in coalescing binaries of neutron stars - I. Theoretical framework and crust breaking. Mon. Not. Roy. Astron. Soc., 506(2):2985–2998, 2021.
[3] Hao-Jui Kuan, Arthur G. Suvorov, and Kostas D. Kokkotas. General-relativistic treatment of tidal g-mode resonances in coalescing binaries of neutron stars - II. As triggers for precursor flares of short gamma-ray bursts. Mon. Not. Roy. Astron. Soc., 508(2):1732–1744, 2021.
[4] Hao-Jui Kuan and Kostas D. Kokkotas. f -mode imprints on gravitational waves from coalescing binaries involving aligned spinning neutron stars. Phys. Rev. D, 106(6):064052, September 2022.
[5] Hao-Jui Kuan, Jasbir Singh, Daniela D. Doneva, Stoytcho S. Yazadjiev, and Kostas D. Kokkotas. Nonlinear evolution and nonuniqueness of scalarized neutron stars. Phys. Rev. D, 104(12):124013, 2021.
[6] Hao-Jui Kuan, Arthur G. Suvorov, Daniela D. Doneva, and Stoytcho S. Yazadjiev. Gravitational Waves from Accretion-Induced Descalarization in Massive Scalar-Tensor Theory. Phys. Rev. Lett., 129(12):121104, Septem- ber 2022.
[7] Chao-Qiang Geng, Hao-Jui Kuan, and Ling-Wei Luo. Viable constraint on scalar field in scalar-tensor theory. Class. Quant. Grav., 37(11):115001, 2020.
[8] Chao-Qiang Geng, Hao-Jui Kuan, and Ling-Wei Luo. Inverse-chirp imprint of gravitational wave signals in scalar tensor theory. Eur. Phys. J. C, 80(8):780, 2020.
[9] Da Huang, Chao-Qiang Geng, and Hao-Jui Kuan. Scalar gravitational wave signals from core collapse in massive scalar-tensor gravity with triple-scalar interactions. Class. Quant. Grav., 38(24):245006, 2021.
[10] Hao-Jui Kuan, Daniela D. Doneva, and Stoytcho S. Yazadjiev. Dynamical Formation of Scalarized Black Holes and Neutron Stars through Stellar Core Collapse. Phys. Rev. Lett., 127(16):161103, 2021.
[11] B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.
[12] B. P. Abbott et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett., 119(16):161101, 2017.
[13] Guillaume Faye, Sylvain Marsat, Luc Blanchet, and Bala R. Iyer. The third and a half post-Newtonian gravita- tional wave quadrupole mode for quasi-circular inspiralling compact binaries. Class. Quant. Grav., 29:175004, 2012.
[14] Tanguy Marchand, Quentin Henry, Fran ̧cois Larrouturou, Sylvain Marsat, Guillaume Faye, and Luc Blanchet. The mass quadrupole moment of compact binary systems at the fourth post-Newtonian order. Class. Quant. Grav., 37(21):215006, 2020.
[15] Franc ̧ois Larrouturou, Quentin Henry, Luc Blanchet, and Guillaume Faye. The Quadrupole Moment of Compact Binaries to the Fourth post-Newtonian Order: I. Non-Locality in Time and Infra-Red Divergencies. arXiv e- prints, page arXiv:2110.02240, October 2021.
[16] Franc ̧ois Larrouturou, Luc Blanchet, Quentin Henry, and Guillaume Faye. The Quadrupole Moment of Compact Binaries to the Fourth post-Newtonian Order: II. Dimensional Regularization and Renormalization. arXiv e- prints, page arXiv:2110.02243, October 2021.
[17] Quentin Henry, Guillaume Faye, and Luc Blanchet. Tidal effects in the gravitational-wave phase evolution of compact binary systems to next-to-next-to-leading post-Newtonian order. Phys. Rev. D, 102(4):044033, 2020.
[18] Quentin Henry, Guillaume Faye, and Luc Blanchet. Hamiltonian for tidal interactions in compact binary systems to next-to-next-to-leading post-Newtonian order. Phys. Rev. D, 102(12):124074, 2020.
[19] Curt Cutler and Eanna E. Flanagan. Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form? Phys. Rev. D, 49:2658–2697, 1994.
[20] Kostas Kokkotas, Andrzej Kro ́lak, and George Tsegas. Statistical analysis of the estimators of the parameters of the gravitational-wave signal from a coalescing binary. Classical and Quantum Gravity, 11(7):1901–1918, July 1994.
[21] Thibault Damour, Alessandro Nagar, and Loic Villain. Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals. Phys. Rev. D, 85:123007, 2012.
[22] B. P. Abbott et al. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett., 121(16):161101, 2018.
[23] B. P. Abbott et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett., 848(2):L13, 2017.
[24] B. P. Abbott et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett., 848(2):L12, 2017.
[25] A. S. Pozanenko, M. V. Barkov, P. Yu. Minaev, A. A. Volnova, E. D. Mazaeva, A. S. Moskvitin, M. A. Krugov, V. A. Samodurov, V. M. Loznikov, and M. Lyutikov. GRB 170817A Associated with GW170817: Multi-frequency Observations and Modeling of Prompt Gamma-Ray Emission. ApJ, 852(2):L30, January 2018.
[26] M. Soares-Santos et al. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophys. J. Lett., 848(2):L16, 2017.
[27] V. Savchenko et al. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817. Astrophys. J. Lett., 848(2):L15, 2017.
[28] A. Goldstein et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J. Lett., 848(2):L14, 2017.
[29] D. A. Coulter et al. Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source. Science, 358:1556, 2017.
[30] B. P. Abbott et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4M⊙. Astrophys. J. Lett., 892(1):L3, 2020.
[31] Nicholas Farrow, Xing-Jiang Zhu, and Eric Thrane. The mass distribution of Galactic double neutron stars. Astrophys. J., 876(1):18, 2019.
[32] Jianwei Zhang, Yiyan Yang, Chengmin Zhang, Wuming Yang, Di Li, Shaolan Bi, and Xianfei Zhang. The mass distribution of Galactic double neutron stars: constraints on the gravitational-wave sources like GW170817. Mon. Not. Roy. Astron. Soc., 488(4):5020–5028, 2019.
[33] R.Abbottetal.ObservationofGravitationalWavesfromTwoNeutronStar-BlackHoleCoalescences.Astrophys. J. Lett., 915(1):L5, 2021.
[34] E. Troja, S. Rosswog, and N. Gehrels. Precursors of Short Gamma-ray Bursts. Astrophys. J., 723(2):1711–1717,
November 2010.
[35] Pavel Minaev and Alexei Pozanenko. Precursors of Short Gamma-Ray Bursts in the SPI-ACS/INTEGRAL
Experiment. Astron. Lett., 43(1):1–20, 2017.
[36] Pavel Minaev, Alexei Pozanenko, and Sergei Molkov. Precursors of short gamma-ray bursts detected by the
INTEGRAL observatory. Int. J. Mod. Phys. D, 27(10):1844013, 2018.
[37] Shu-Qing Zhong, Zi-Gao Dai, Ji-Gui Cheng, Lin Lan, and Hai-Ming Zhang. Precursors in Short Gamma-Ray
Bursts as a Possible Probe of Progenitors. Astrophys. J., 884(1):25, October 2019.
[38] Jie-Shuang Wang, Zong-Kai Peng, Jin-Hang Zou, Bin-Bin Zhang, and Bing Zhang. Stringent Search for Precur- sor Emission in Short GRBs from Fermi/GBM data and Physical Implications. Astrophys. J. Lett., 902(2):L42, 2020.
[39] David Tsang, Jocelyn S. Read, Tanja Hinderer, Anthony L. Piro, and Ruxandra Bondarescu. Resonant Shat- tering of Neutron Star Crusts. Phys. Rev. Lett., 108:011102, 2012.
[40] David Tsang. Shattering Flares During Close Encounters of Neutron Stars. Astrophys. J., 777:103, 2013.
[41] Arthur G. Suvorov and Kostas D. Kokkotas. Precursor flares of short gamma-ray bursts from crust yielding due to tidal resonances in coalescing binaries of rotating, magnetized neutron stars. Phys. Rev. D, 101(8):083002, 2020.
[42] Tomoki Wada, Masaru Shibata, and Kunihito Ioka. Analytic properties of the electromagnetic field of binary compact stars and electromagnetic precursors to gravitational waves. PTEP, 2020(10):103E01, 2020.
[43] Elias R. Most and Alexander A. Philippov. Electromagnetic precursors to gravitational wave events: Numerical simulations of flaring in pre-merger binary neutron star magnetospheres. Astrophys. J. Lett., 893(1):L6, 2020.
[44] Federico Carrasco, Masaru Shibata, and Oscar Reula. Magnetospheres of black hole-neutron star binaries. Phys. Rev. D, 104(6):063004, 2021.
[45] C. J. Horowitz and Kai Kadau. The Breaking Strain of Neutron Star Crust and Gravitational Waves. Phys. Rev. Lett., 102:191102, 2009.
[46] A. I. Chugunov and C. J. Horowitz. Breaking stress of neutron star crust. Mon. Not. Roy. Astron. Soc., 407(1):L54–L58, September 2010.
[47] Kelsey Hoffman and Jeremy Heyl. Mechanical properties of non-accreting neutron star crusts. Mon. Not. Roy. Astron. Soc., 426(3):2404–2412, November 2012.
[48] D. A. Baiko and A. A. Kozhberov. Anisotropic crystal structure of magnetized neutron star crust. Mon. Not. Roy. Astron. Soc., 470(1):517–521, June 2017.
[49] D. A. Baiko and A. I. Chugunov. Breaking properties of neutron star crust. Mon. Not. Roy. Astron. Soc., 480(4):5511–5516, 2018.
[50] P. N. McDermott, H. M. van Horn, and J. F. Scholl. Nonradial g-mode oscillations of warm neutron stars. Astrophys. J., 268:837–848, May 1983.
[51] P. N. McDermott, C. J. Hansen, H. M. van Horn, and R. Buland. The nonradial oscillation spectra of neutron stars. Astrophys. J. Lett., 297:L37–L40, October 1985.
[52] P. N. McDermott, H. M. van Horn, and C. J. Hansen. Nonradial Oscillations of Neutron Stars. Astrophys. J., 325:725, February 1988.
[53] Lee Samuel Finn. G-modes in zero-temperature neutron stars. Mon. Not. Roy. Astron. Soc., 227:265–293, July 1987.
[54] P. N. McDermott. Density Discontinuity G-Modes. Mon. Not. Roy. Astron. Soc., 245:508, July 1990.
[55] E. M. Kantor and M. E. Gusakov. Composition temperature-dependent g-modes in superfluid neutron stars.
Mon. Not. Roy. Astron. Soc., 442:90, 2014.
[56] A. Passamonti, N. Andersson, and W. C. G. Ho. Buoyancy and g-modes in young superfluid neutron stars.
Mon. Not. Roy. Astron. Soc., 455(2):1489–1511, 2016.
[57] Hang Yu and Nevin N. Weinberg. Resonant tidal excitation of superfluid neutron stars in coalescing binaries.
Mon. Not. Roy. Astron. Soc., 464(3):2622–2637, 2017.
[58] Constantinos Constantinou, Sophia Han, Prashanth Jaikumar, and Madappa Prakash. g modes of neutron stars
with hadron-to-quark crossover transitions. Phys. Rev. D, 104(12):123032, 2021.
[59] Prashanth Jaikumar, Alexandra Semposki, Madappa Prakash, and Constantinos Constantinou. g-mode oscilla-
tions in hybrid stars: A tale of two sounds. Phys. Rev. D, 103(12):123009, 2021.
[60] Hajime Sotani and Tomoya Takiwaki. Gravitational wave asteroseismology with protoneutron stars. Phys. Rev.
D, 94(4):044043, 2016.
[61] Alejandro Torres-Forn ́e, Pablo Cerda ́-Dura ́n, Martin Obergaulinger, Bernhard Mu ̈ller, and Jos ́e A. Font. Univer- sal Relations for Gravitational-Wave Asteroseismology of Protoneutron Stars. Phys. Rev. Lett., 123(5):051102, 2019.
[62] Marie-Anne Bizouard, Patricio Maturana-Russel, Alejandro Torres-Forn ́e, Martin Obergaulinger, Pablo Cerda ́- Dura ́n, Nelson Christensen, Jos ́e A. Font, and Renate Meyer. Inference of protoneutron star properties from gravitational-wave data in core-collapse supernovae. Phys. Rev. D, 103(6):063006, 2021.
[63] Hajime Sotani, Tomoya Takiwaki, and Hajime Togashi. Universal relation for supernova gravitational waves. Phys. Rev. D, 104(12):123009, 2021.
[64] Nicolas Yunes, Kent Yagi, and Frans Pretorius. Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226. Phys. Rev. D, 94(8):084002, 2016.
[65] Andreas Bauswein, Nikolaos Stergioulas, and Hans-Thomas Janka. Exploring properties of high-density matter through remnants of neutron-star mergers. Eur. Phys. J. A, 52(3):56, 2016.
[66] Harry Ho-Yin Ng, Patrick Chi-Kit Cheong, Lap-Ming Lin, and Tjonnie Guang Feng Li. Gravitational-wave Asteroseismology with f-modes from Neutron Star Binaries at the Merger Phase. Astrophys. J., 915(2):108, 2021.
[67] Praveen Manoharan, Christian J. Kru ̈ger, and Kostas D. Kokkotas. Universal relations for binary neutron star mergers with long-lived remnants. Phys. Rev. D, 104(2):023005, 2021.
[68] Jocelyn S. Read, Benjamin D. Lackey, Benjamin J. Owen, and John L. Friedman. Constraints on a phenomeno- logically parameterized neutron-star equation of state. Phys. Rev. D, 79:124032, 2009.
[69] Michael F. O’Boyle, Charalampos Markakis, Nikolaos Stergioulas, and Jocelyn S. Read. Parametrized equation of state for neutron star matter with continuous sound speed. Phys. Rev. D, 102(8):083027, 2020.
[70] Tod Strohmayer and Simin Mahmoodifar. A Non-radial Oscillation Mode in an Accreting Millisecond Pulsar? Astrophys. J., 784:72, 2014.
[71] N. Andersson, D. I. Jones, and W. C. G. Ho. Implications of an r-mode in XTE J1751-305: Mass, radius and spin evolution. Mon. Not. Roy. Astron. Soc., 442(2):1786–1793, 2014.
[72] Umin Lee. Excitation of a non-radial mode in a millisecond X-ray pulsar XTE J1751-305. Mon. Not. Roy. Astron. Soc., 442(4):3037–3043, 2014.
[73] Geraint Pratten, Patricia Schmidt, and Natalie Williams. Impact of Dynamical Tides on the Reconstruction of the Neutron Star Equation of State. arXiv e-prints, page arXiv:2109.07566, September 2021.
[74] Natalie Williams, Geraint Pratten, and Patricia Schmidt. Prospects for distinguishing dynamical tides in inspiralling binary neutron stars with third generation gravitational-wave detectors. arXiv e-prints, page arXiv:2203.00623, March 2022.
[75] Tanja Hinderer. Tidal Love numbers of neutron stars. Astrophys. J., 677:1216–1220, 2008.
[76] Eanna E. Flanagan and Tanja Hinderer. Constraining neutron star tidal Love numbers with gravitational wave detectors. Phys. Rev. D, 77:021502, 2008.
[77] Tanja Hinderer, Benjamin D. Lackey, Ryan N. Lang, and Jocelyn S. Read. Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D, 81:123016, 2010.
[78] Tanja Hinderer et al. Effects of neutron-star dynamic tides on gravitational waveforms within the effective-one- body approach. Phys. Rev. Lett., 116(18):181101, 2016.
[79] Jan Steinhoff, Tanja Hinderer, Alessandra Buonanno, and Andrea Taracchini. Dynamical Tides in General Relativity: Effective Action and Effective-One-Body Hamiltonian. Phys. Rev. D, 94(10):104028, 2016.
[80] Patricia Schmidt and Tanja Hinderer. Frequency domain model of f-mode dynamic tides in gravitational waveforms from compact binary inspirals. Phys. Rev. D, 100(2):021501, 2019.
[81] Manuel Arca Sedda. Dissecting the properties of neutron star - black hole mergers originating in dense star clusters. Commun. Phys., 3:43, 2020.
[82] Manuel Arca Sedda. Dynamical Formation of the GW190814 Merger. Astrophys. J. Lett., 908(2):L38, 2021.
[83] Wenbin Lu, Paz Beniamini, and Cl ́ement Bonnerot. On the formation of GW190814. Mon. Not. Roy. Astron.
Soc., 500(2):1817–1832, 2020.
[84] R. A. Mardling. Tidal Capture in Star Clusters. In Piet Hut and Junichiro Makino, editors, Dynamical Evolution
of Star Clusters: Confrontation of Theory and Observations, volume 174, page 273, January 1996.
[85] Erez Michaely, Dimitry Ginzburg, and Hagai B. Perets. Neutron star natal kicks: Collisions, μTDEs, faint SNe, GRBs and GW sources with preceding electromagnetic counterparts. arXiv e-prints, page arXiv:1610.00593, September 2016.
[86] Barton Zwiebach. Curvature Squared Terms and String Theories. Phys. Lett. B, 156:315–317, 1985.
[87] David J. Gross and John H. Sloan. The Quartic Effective Action for the Heterotic String. Nucl. Phys. B,
291:41–89, 1987.
[88] Valerio Faraoni and Salvatore Capozziello. Beyond Einstein Gravity: A Survey of Gravitational Theories for
Cosmology and Astrophysics. Springer, Dordrecht, 2011.
[89] Thibault Damour and Gilles Esposito-Farese. Nonperturbative strong field effects in tensor - scalar theories of
gravitation. Phys. Rev. Lett., 70:2220–2223, 1993.
[90] Ulrich Sperhake, Christopher J. Moore, Roxana Rosca, Michalis Agathos, Davide Gerosa, and Christian D. Ott. Long-lived inverse chirp signals from core collapse in massive scalar-tensor gravity. Phys. Rev. Lett., 119(20):201103, 2017.
[91] Hector O. Silva, Jeremy Sakstein, Leonardo Gualtieri, Thomas P. Sotiriou, and Emanuele Berti. Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling. Phys. Rev. Lett., 120(13):131104, 2018.
[92] Daniela D. Doneva, Lucas G. Collodel, Christian J. Kru ̈ger, and Stoytcho S. Yazadjiev. Spin-induced scalariza- tion of Kerr black holes with a massive scalar field. Eur. Phys. J. C, 80(12):1205, 2020.
[93] DanielaD.DonevaandStoytchoS.Yazadjiev.Dynamicsofthenonrotatingandrotatingblackholescalarization. Phys. Rev. D, 103(6):064024, 2021.
[94] Daniela D. Doneva and Stoytcho S. Yazadjiev. Spontaneously scalarized black holes in dynamical Chern-Simons gravity: dynamics and equilibrium solutions. Phys. Rev. D, 103(8):083007, 2021.
[95] William E. East and Justin L. Ripley. Dynamics of Spontaneous Black Hole Scalarization and Mergers in Einstein-Scalar-Gauss-Bonnet Gravity. Phys. Rev. Lett., 127(10):101102, 2021.
[96] Emanuele Berti et al. Testing General Relativity with Present and Future Astrophysical Observations. Class.
Quant. Grav., 32:243001, 2015.
[97] Philippe Brax, Anne-Christine Davis, Scott Melville, and Leong Khim Wong. Spin-orbit effects for compact
binaries in scalar-tensor gravity. JCAP., 2021(10):075, October 2021.
[98] Oliver Scho ̈n and Daniela D. Doneva. Tensor-multiscalar gravity: Equations of motion to 2.5 post-Newtonian
order. Phys. Rev. D, 105(6):064034, 2022.
[99] Banafsheh Shiralilou, Tanja Hinderer, Samaya M. Nissanke, N ́estor Ortiz, and Helvi Witek. Post-Newtonian
gravitational and scalar waves in scalar-Gauss-Bonnet gravity. Class. Quant. Grav., 39(3):035002, 2022.
[100] Laura Bernard, Luc Blanchet, and David Trestini. Gravitational waves in scalar-tensor theory to one-and-a-half
post-Newtonian order. arXiv e-prints, page arXiv:2201.10924, January 2022.
[101] Kostas Glampedakis, George Pappas, Hector O. Silva, and Emanuele Berti. Post-Tolman-Oppenheimer-Volkoff
formalism for relativistic stars. Phys. Rev. D, 92(2):024056, 2015.
[102] Valerio Faraoni and Shahn Nadeau. The (pseudo)issue of the conformal frame revisited. Phys. Rev. D, 75:023501,
2007.
[103] Laur Jarv, Piret Kuusk, and Margus Saal. Scalar-tensor cosmology at the general relativity limit: Jordan versus
Einstein frame. Phys. Rev. D, 76:103506, 2007.
[104] S. Capozziello, P. Martin-Moruno, and C. Rubano. Physical non-equivalence of the Jordan and Einstein frames.
Phys. Lett. B, 689:117–121, 2010.
[105] G. Antoniou, A. Bakopoulos, and P. Kanti. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in
Gauss-Bonnet Theories. Phys. Rev. Lett., 120(13):131102, 2018.
[106] Daniela D. Doneva and Stoytcho S. Yazadjiev. New Gauss-Bonnet Black Holes with Curvature-Induced Scalar-
ization in Extended Scalar-Tensor Theories. Phys. Rev. Lett., 120(13):131103, 2018.
[107] Richard C. Tolman. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Physical Review,
55(4):364–373, February 1939.
[108] J. R. Oppenheimer and G. M. Volkoff. On Massive Neutron Cores. Physical Review, 55(4):374–381, February 1939.
[109] H. T. Cromartie et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nature Astron., 4(1):72–76, 2019.
[110] L. Lindblom and S. L. Detweiler. The quadrupole oscillations of neutron stars. Astrophy. J. Supp., 53:73–92, September 1983.
[111] Steven L. Detweiler and L. Lindblom. On the nonradial pulsations of general relativistic stellar models. Astro- phys. J., 292:12–15, 1985.
[112] C. J. Kru ̈ger, W. C. G. Ho, and N. Andersson. Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity. Phys. Rev. D, 92(6):063009, 2015.
[113] N. Froeman, P. O. Froeman, N. Andersson, and A. Hoekback. Black hole normal modes: Phase integral treatment. Phys. Rev. D, 45:2609–2616, 1992.
[114] Nils Andersson, Kostas D. Kokkotas, and Bernard F. Schutz. A New numerical approach to the oscillation modes of relativistic stars. Mon. Not. Roy. Astron. Soc., 274:1039, 1995.
[115] Carolyn Raithel, Feryal O ̈zel, and Dimitrios Psaltis. Tidal deformability from GW170817 as a direct probe of the neutron star radius. Astrophys. J. Lett., 857(2):L23, 2018.
[116] Soumi De, Daniel Finstad, James M. Lattimer, Duncan A. Brown, Edo Berger, and Christopher M. Biwer. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. Phys. Rev. Lett., 121(9):091102, 2018. [Erratum: Phys.Rev.Lett. 121, 259902 (2018)].
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126] [127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
S. K. Greif, K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk. Equation of state constraints from nuclear physics, neutron star masses, and future moment of inertia measurements. Astrophys. J., 901(2):155, 2020.
Nils Andersson and Kostas D. Kokkotas. Towards gravitational wave asteroseismology. Mon. Not. Roy. Astron. Soc., 299:1059–1068, 1998.
H. K. Lau, P. T. Leung, and L. M. Lin. Inferring physical parameters of compact stars from their f-mode gravitational wave signals. Astrophys. J., 714:1234–1238, 2010.
T. K. Chan, Y. H. Sham, P. T. Leung, and L. M. Lin. Multipolar universal relations between f-mode frequency and tidal deformability of compact stars. Phys. Rev. D, 90(12):124023, 2014.
C. J. Kru ̈ger and K. D. Kokkotas. Fast Rotating Relativistic Stars: Spectra and Stability without Approxima- tion. Phys. Rev. Lett., 125(11):111106, 2020.
Ernesto Benitez, Joseph Weller, Victor Guedes, Cecilia Chirenti, and M. Coleman Miller. Investigating the I-Love-Q and w-mode Universal Relations Using Piecewise Polytropes. Phys. Rev. D, 103(2):023007, 2021.
Hajime Sotani and Bharat Kumar. Universal relations between the quasinormal modes of neutron star and tidal deformability. Phys. Rev. D, 104(12):123002, 2021.
Dong Lai. Resonant oscillations and tidal heating in coalescing binary neutron stars. Mon. Not. Roy. Astron. Soc., 270:611, 1994.
Paul Coppin, Krijn D. de Vries, and Nick van Eijndhoven. Identification of gamma-ray burst precursors in Fermi-GBM bursts. Phys. Rev. D, 102(10):103014, 2020.
Tod E. Strohmayer. Oscillations of Rotating Neutron Stars. Astrophys. J., 372:573, May 1991.
Andreas Reisenegger and Peter Goldreich. A New Class of g-Modes in Neutron Stars. Astrophys. J., 395:240,
August 1992.
Keith H. Lockitch, Nils Andersson, and John L. Friedman. The Rotational modes of relativistic stars. 1. Analytic
results. Phys. Rev. D, 63:024019, 2001.
P. Haensel, K. P. Levenfish, and D. G. Yakovlev. Adiabatic index of dense matter and damping of neutron star
pulsations. Astron. Astrophys., 394:213–218, 2002.
J. Hoyos, A. Reisenegger, and J. A. Valdivia. Magnetic Field Evolution in Neutron Stars: One-Dimensional
Multi-Fluid Model. Astron. Astrophys., 487:789, 2008.
Jaime H. Hoyos, Andreas Reisenegger, and Juan A. Valdivia. Asymptotic, non-linear solutions for ambipolar
diffusion in one dimension. MNRAS, 408(3):1730–1741, November 2010.
Andreas Reisenegger. Chemical equilibrium and stable stratification of a multicomponent fluid: Thermodynam-
ics and application to neutron stars. Astrophys. J., 550:860–862, 2001.
L. S. Finn. G-modes of non-radially pulsating relativistic stars - The slow-motion formalism. Mon. Not. Roy.
Astron. Soc., 222:393–416, September 1986.
Richard Price and Kip S. Thorne. Non-Radial Pulsation of General-Relativistic Stellar Models. II. Properties
of the Gravitational Waves. Astrophys. J., 155:163, January 1969.
Nils Andersson and Kostas D. Kokkotas. Pulsation modes for increasingly relativistic polytropes. Mon. Not.
Roy. Astron. Soc., 297:493, 1998.
Nils Andersson and Kostas D. Kokkotas. Gravitational waves and pulsating stars: What can we learn from
future observations? Phys. Rev. Lett., 77:4134–4137, 1996.
Sebastian H. Vo ̈lkel, Christian J. Kru ̈ger, and Kostas D. Kokkotas. Bayesian Inverse Problem of Rotating Neutron Stars. Phys. Rev. D, 103(8):083008, 2021.
[138]
[139]
[140]
[141] [142]
[143]
[144]
[145]
[146]
[147]
[148]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
[158]
Bibliography
K. D. Kokkotas, T. A. Apostolatos, and N. Andersson. The Inverse problem for pulsating neutron stars: A ’Fingerprint analysis’ for the supranuclear equation of state. Mon. Not. Roy. Astron. Soc., 320:307–315, 2001.
L. K. Tsui and P. T. Leung. Universality in quasi-normal modes of neutron stars. Mon. Not. Roy. Astron. Soc., 357:1029–1037, 2005.
Wenrui Xu and Dong Lai. Resonant Tidal Excitation of Oscillation Modes in Merging Binary Neutron Stars: Inertial-Gravity Modes. Phys. Rev. D, 96(8):083005, 2017.
Andrei M. Beloborodov and Xinyu Li. Magnetar heating. Astrophys. J., 833(2):261, 2016.
Albino Perego, Sebastiano Bernuzzi, and David Radice. Thermodynamics conditions of matter in neutron star
mergers. Eur. Phys. J. A, 55(8):124, 2019.
Roland Oechslin, H. T. Janka, and A. Marek. Relativistic neutron star merger simulations with non-zero temperature equations of state. 1. Variation of binary parameters and equation of state. Astron. Astrophys., 467:395, 2007.
Wolfgang Kastaun, Riccardo Ciolfi, Andrea Endrizzi, and Bruno Giacomazzo. Structure of Stable Binary Neutron Star Merger Remnants: Role of Initial Spin. Phys. Rev. D, 96(4):043019, 2017.
A. Y. Potekhin, D. G. Yakovlev, G. Chabrier, and Oleg Y. Gnedin. Thermal structure and cooling of superfluid magnetic neutron stars. Astrophys. J., 594:404–418, 2003.
Giovanni Camelio, Tim Dietrich, Stephan Rosswog, and Brynmor Haskell. Axisymmetric models for neutron star merger remnants with realistic thermal and rotational profiles. Phys. Rev. D, 103(6):063014, 2021.
A. Passamonti, N. Andersson, and P. Pnigouras. Dynamical tides in neutron stars: The impact of the crust. Mon. Not. Roy. Astron. Soc., 504(1):1273–1293, 2021.
N. Andersson and P. Pnigouras. The g-mode spectrum of reactive neutron star cores. Mon. Not. Roy. Astron. Soc., 489(3):4043–4048, 2019.
Yotam Sherf. Tidal-heating and viscous dissipation correspondence in black holes and viscous compact objects. Phys. Rev. D, 103(10):104003, 2021.
Nils Andersson, G. L. Comer, and K. Glampedakis. How viscous is a superfluid neutron star core? Nucl. Phys. A, 763:212–229, 2005.
E. E. Kolomeitsev and D. N. Voskresensky. Viscosity of neutron star matter and r-modes in rotating pulsars. Phys. Rev. C, 91(2):025805, 2015.
Phil Arras and Nevin N. Weinberg. Urca reactions during neutron star inspiral. Mon. Not. Roy. Astron. Soc., 486(1):1424–1436, 2019.
Wynn C. G. Ho and Dong Lai. Resonant tidal excitations of rotating neutron stars in coalescing binaries. Mon. Not. Roy. Astron. Soc., 308:153, 1999.
Dong Lai and Yanqin Wu. Resonant Tidal Excitations of Inertial Modes in Coalescing Neutron Star Binaries. Phys. Rev. D, 74:024007, 2006.
A. Akmal, V. R. Pandharipande, and D. G. Ravenhall. The Equation of state of nucleon matter and neutron star structure. Phys. Rev. C, 58:1804–1828, 1998.
H. Mu ̈ther, M. Prakash, and T. L. Ainsworth. The nuclear symmetry energy in relativistic Brueckner-Hartree- Fock calculations. Physics Letters B, 199(4):469–474, December 1987.
Horst Mueller and Brian D. Serot. Relativistic mean field theory and the high density nuclear equation of state. Nucl. Phys. A, 606:508–537, 1996.
Robert B. Wiringa, V. Fiks, and A. Fabrocini. Equation of state for dense nucleon matter. Phys. Rev. C, 38:1010–1037, 1988.
[159]
[160]
[161]
[162]
[163]
[164]
[165] [166]
[167] [168] [169] [170]
[171] [172] [173] [174]
[175]
[176]
[177]
L. Engvik, M. Hjorth-Jensen, E. Osnes, G. Bao, and E. Ostgaard. Asymmetric nuclear matter and neutron star properties. Phys. Rev. Lett., 73:2650–2653, 1994.
F. Douchin and P. Haensel. A unified equation of state of dense matter and neutron star structure. Astron. Astrophys., 380:151, 2001.
B. Friedman and V. R. Pandharipande. Hot and cold, nuclear and neutron matter. Nucl. Phys. A, 361:502–520, 1981.
M. Baldo, I. Bombaci, and G. F. Burgio. Microscopic nuclear equation of state with three-body forces and neutron star structure. Astron. Astrophys., 328:274–282, 1997.
B. K. Agrawal, S. Shlomo, and V. Kim Au. Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C, 72:014310, 2005.
Benjamin D. Lackey, Mohit Nayyar, and Benjamin J. Owen. Observational constraints on hyperons in neutron stars. Phys. Rev. D, 73:024021, 2006.
N. K. Glendenning. Neutron Stars Are Giant Hypernuclei? Astrophys. J., 293:470–493, 1985.
M. Prakash, T. L. Ainsworth, and J. M. Lattimer. Equation of state and the maximum mass of neutron stars.
Phys. Rev. Lett., 61:2518–2521, 1988.
M. Prakash, J. R. Cooke, and J. M. Lattimer. Quark - hadron phase transition in protoneutron stars. Phys.
Rev. D, 52:661–665, 1995.
Mark Alford, Matt Braby, M. W. Paris, and Sanjay Reddy. Hybrid stars that masquerade as neutron stars.
Astrophys. J., 629:969–978, 2005.
Christian D. Ott, Adam Burrows, Luc Dessart, and Eli Livne. A New Mechanism for Gravitational Wave
Emission in Core-Collapse Supernovae. Phys. Rev. Lett., 96:201102, 2006.
I. Kowalska-Leszczynska, T. Regimbau, T. Bulik, M. Dominik, and K. Belczynski. Effect of metallicity on the gravitational-wave signal from the cosmological population of compact binary coalescences. A&A, 574:A58, February 2015.
S. Woosley, Tuguldur Sukhbold, and H. T. Janka. The Birth Function for Black Holes and Neutron Stars in Close Binaries. Astrophys. J., 896(1):56, 2020.
M. Coleman Miller, Cecilia Chirenti, and Frederick K. Lamb. Constraining the equation of state of high-density cold matter using nuclear and astronomical measurements. Astrophys. J., 888:12, 2019.
G. Raaijmakers et al. Constraining the dense matter equation of state with joint analysis of NICER and LIGO/Virgo measurements. Astrophys. J. Lett., 893(1):L21, 2020.
G. Raaijmakers, S. K. Greif, K. Hebeler, T. Hinderer, S. Nissanke, A. Schwenk, T. E. Riley, A. L. Watts, J. M. Lattimer, and W. C. G. Ho. Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass-Radius Estimate of PSR J0740+6620 and Multimessenger Observations. Astrophys. J. Lett., 918(2):L29, 2021.
Kenta Kiuchi, Pablo Cerda ́-Dur ́an, Koutarou Kyutoku, Yuichiro Sekiguchi, and Masaru Shibata. Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers. Phys. Rev. D, 92(12):124034, 2015.
Matthew D. Duez, Yuk Tung Liu, Stuart L. Shapiro, and Branson C. Stephens. General relativistic hydrody- namics with viscosity: Contraction, catastrophic collapse, and disk formation in hypermassive neutron stars. Phys. Rev. D, 69:104030, 2004.
Sho Fujibayashi, Kenta Kiuchi, Nobuya Nishimura, Yuichiro Sekiguchi, and Masaru Shibata. Mass Ejection from the Remnant of a Binary Neutron Star Merger: Viscous-Radiation Hydrodynamics Study. Astrophys. J., 860(1):64, 2018.
[178] [179]
[180] [181] [182]
[183] [184] [185] [186]
[187] [188]
[189]
[190] [191] [192] [193] [194]
[195] [196]
Bibliography
Lee Lindblom. Determining the Nuclear Equation of State from Neutron-Star Masses and Radii. ApJ, 398:569, October 1992.
L. R. Weih, E. R. Most, and L. Rezzolla. Optimal Neutron-star Mass Ranges to Constrain the Equation of State of Nuclear Matter with Electromagnetic and Gravitational-wave Observations. Astrophys. J., 881(1):73, 2019.
P. C. Peters and J. Mathews. Gravitational Radiation from Point Masses in a Keplerian Orbit. Physical Review, 131(1):435–440, July 1963.
GeraintPratten,PatriciaSchmidt,andTanjaHinderer.Gravitational-WaveAsteroseismologywithFundamental Modes from Compact Binary Inspirals. Nature Commun., 11(1):2553, 2020.
Jan Steinhoff, Tanja Hinderer, Tim Dietrich, and Francois Foucart. Spin effects on neutron star fundamental- mode dynamical tides: Phenomenology and comparison to numerical simulations. Phys. Rev. Res., 3(3):033129, 2021.
Kent Yagi and Nicolas Yunes. I-Love-Q Relations in Neutron Stars and their Applications to Astrophysics, Gravitational Waves and Fundamental Physics. Phys. Rev. D, 88(2):023009, 2013.
Andrzej Kr ́olak, Kostas D. Kokkotas, and Gerhard Scha ̈fer. Estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary. Phys. Rev. D, 52(4):2089–2111, August 1995.
B. P. Abbott et al. Properties of the binary neutron star merger gw170817. Physical Review X, 9(1):011001, January 2019.
Collin D. Capano, Ingo Tews, Stephanie M. Brown, Ben Margalit, Soumi De, Sumit Kumar, Duncan A. Brown, Badri Krishnan, and Sanjay Reddy. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nature Astron., 4(6):625–632, 2020.
Philippe Landry, Reed Essick, and Katerina Chatziioannou. Nonparametric constraints on neutron star matter with existing and upcoming gravitational wave and pulsar observations. Phys. Rev. D, 101(12):123007, 2020.
Tim Dietrich, Michael W. Coughlin, Peter T. H. Pang, Mattia Bulla, Jack Heinzel, Lina Issa, Ingo Tews, and Sarah Antier. Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science, 370(6523):1450–1453, 2020.
Peter T. H. Pang, Ingo Tews, Michael W. Coughlin, Mattia Bulla, Chris Van Den Broeck, and Tim Dietrich. Nuclear Physics Multimessenger Astrophysics Constraints on the Neutron Star Equation of State: Adding NICER’s PSR J0740+6620 Measurement. Astrophys. J., 922(1):14, 2021.
Eric D. Van Oeveren and John L. Friedman. Upper limit set by causality on the tidal deformability of a neutron star. Phys. Rev. D, 95(8):083014, 2017.
Ch. C. Moustakidis, T. Gaitanos, Ch. Margaritis, and G. A. Lalazissis. Bounds on the speed of sound in dense matter, and neutron star structure. Phys. Rev. C, 95(4):045801, 2017. [Erratum: Phys.Rev.C 95, 059904 (2017)].
Na Zhang, Dehua Wen, and Houyuan Chen. Imprint of the speed of sound in nuclear matter on global properties of neutron stars. Phys. Rev. C, 99(3):035803, March 2019.
A. Kanakis-Pegios, P. S. Koliogiannis, and Ch. C. Moustakidis. Speed of sound constraints from tidal deforma- bility of neutron stars. Phys. Rev. C, 102(5):055801, 2020.
Ingo Tews, Peter T. H. Pang, Tim Dietrich, Michael W. Coughlin, Sarah Antier, Mattia Bulla, Jack Heinzel, and Lina Issa. On the Nature of GW190814 and Its Impact on the Understanding of Supranuclear Matter. Astrophys. J. Lett., 908(1):L1, 2021.
Ingo Tews, Joseph Carlson, Stefano Gandolfi, and Sanjay Reddy. Constraining the speed of sound inside neutron stars with chiral effective field theory interactions and observations. Astrophys. J., 860(2):149, 2018.
Denis A. Leahy, Sharon M. Morsink, and Yi Chou. Constraints on the Mass and Radius of the Neutron Star XTE J1807-294. Astrophys. J., 742(1):17, November 2011.
[197] Cecilia Chirenti, M. Coleman Miller, Tod Strohmayer, and Jordan Camp. Searching for hypermassive neutron
stars with short gamma-ray bursts. Astrophys. J. Lett., 884(1):L16, 2019.
[198] David Radice, Albino Perego, Francesco Zappa, and Sebastiano Bernuzzi. GW170817: Joint Constraint on the
Neutron Star Equation of State from Multimessenger Observations. Astrophys. J. Lett., 852(2):L29, 2018.
[199] Kostas D. Kokkotas and Gerhard Schaefer. Tidal and tidal resonant effects in coalescing binaries. Mon. Not.
Roy. Astron. Soc., 275:301, 1995.
[200] Michelle Vick and Dong Lai. Tidal Effects in Eccentric Coalescing Neutron Star Binaries. Phys. Rev. D,
100(6):063001, 2019.
[201] Greg Ushomirsky, Curt Cutler, and Lars Bildsten. Deformations of accreting neutron star crusts and gravita-
tional wave emission. Mon. Not. Roy. Astron. Soc., 319:902, 2000.
[202] Benjamin J. Owen. Maximum elastic deformations of compact stars with exotic equations of state. Phys. Rev.
Lett., 95:211101, 2005.
[203] Christopher S. Kochanek. Coalescing Binary Neutron Stars. Astrophys. J., 398:234, October 1992.
[204] A. J. Penner, N. Andersson, D. I. Jones, L Samuelsson, and I. Hawke. Crustal failure during binary inspiral. Astrophys. J. Lett., 749:L36, 2012.
[205] O. Blaes, R. Blandford, P. Goldreich, and P. Madau. Neutron Starquake Models for Gamma-Ray Bursts. Astrophys. J., 343:839, August 1989.
[206] Christopher Thompson and Robert C. Duncan. The Soft gamma repeaters as very strongly magnetized neutron stars - 1. Radiative mechanism for outbursts. Mon. Not. Roy. Astron. Soc., 275:255–300, 1995.
[207] H. C. Spruit, F. Daigne, and G. Drenkhahn. Large scale magnetic fields and their dissipation in grb fireballs. Astron. Astrophys., 369:694, 2001.
[208] Chryssa Kouveliotou, Charles A. Meegan, Gerald J. Fishman, Narayana P. Bhat, Michael S. Briggs, Thomas M. Koshut, William S. Paciesas, and Geoffrey N. Pendleton. Identification of Two Classes of Gamma-Ray Bursts. Astrophys. J. Lett., 413:L101, August 1993.
[209] B. Paczynski. Gamma-ray bursters at cosmological distances. Astrophys. J. Lett., 308:L43–L46, September 1986.
[210] Ramesh Narayan, Bohdan Paczynski, and Tsvi Piran. Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. Lett., 395:L83–L86, 1992.
[211] Krzysztof Belczynski, Rosalba Perna, Tomasz Bulik, Vassiliki Kalogera, Natalia Ivanova, and Donald Q. Lamb. A study of compact object mergers as short gamma-ray burst progenitors. Astrophys. J., 648:1110–1116, 2006.
[212] Bruno Giacomazzo, Rosalba Perna, Luciano Rezzolla, Eleonora Troja, and Davide Lazzati. Compact Binary Progenitors of Short Gamma-Ray Bursts. Astrophys. J. Lett., 762:L18, 2013.
[213] M. Gullo ́n, J. A. Pons, J. A. Miralles, D. Vigan`o, N. Rea, and R. Perna. Population synthesis of isolated neutron stars with magneto-rotational evolution - II. From radio-pulsars to magnetars. Mon. Not. Roy. Astron. Soc., 454(1):615–625, 2015.
[214] Lars Bildsten and Curt Cutler. Tidal Interactions of Inspiraling Compact Binaries. Astrophys. J., 400:175, November 1992.
[215] Pantelis Pnigouras. Gravitational-wave-driven tidal secular instability in neutron star binaries. Phys. Rev. D, 100(6):063016, 2019.
[216] Anthony L. Piro and Lars Bildsten. Neutron star crustal interface waves. Astrophys. J., 619:1054–1063, 2005.
[217] B. L. Schumaker and K. S. Thorne. Torsional oscillations of neutron stars. Mon. Not. Roy. Astron. Soc., 203:457–489, May 1983.
[218] [219]
[220] [221]
[222]
[223]
[224]
[225] [226]
[227] [228]
[229]
[230]
[231]
[232]
[233] [234]
[235] [236] [237] [238] [239]
Bibliography
H. Sotani, K. D. Kokkotas, and N. Stergioulas. Torsional Oscillations of Relativistic Stars with Dipole Magnetic Fields. Mon. Not. Roy. Astron. Soc., 375:261–277, 2007.
M. Vavoulidis, K. D. Kokkotas, and A. Stavridis. Crustal Oscillations of Slowly Rotating Relativistic Stars. Mon. Not. Roy. Astron. Soc., 384:1711, 2008.
Hajime Sotani. Empirical formula of crustal torsional oscillations. Phys. Rev. D, 93:044059, 2016.
S. K. Lander and K. N. Gourgouliatos. Magnetic-field evolution in a plastically-failing neutron-star crust. Mon.
Not. Roy. Astron. Soc., 486(3):4130–4143, 2019.
S. Nasiri and Y. Sobouti. Global modes of oscillation of magnetized stars. Astron. Astrophys., 217(1-2):127–136,
June 1989.
S. Yoshida and Y. Eriguchi. A numerical study of normal modes of rotating neutron star models by the cowling
approximation. Astrophys. J., 515:414, 1999.
Erich Gaertig and Kostas D. Kokkotas. Relativistic g-modes in rapidly rotating neutron stars. Phys. Rev. D,
80:064026, 2009.
J. M. Lattimer and M. Prakash. Neutron star structure and the equation of state. Astrophys. J., 550:426, 2001.
Yixiao Zhou and Fan Zhang. Equation of State Dependence of Nonlinear Mode-tide Coupling in Coalescing Binary Neutron Stars. Astrophys. J., 849:114, 2017.
Duncan Neill, William G. Newton, and David Tsang. Resonant Shattering Flares as Multimessenger Probes of the Nuclear Symmetry Energy. Mon. Not. Roy. Astron. Soc., 504(1):1129–1143, 2021.
Alpha Mastrano, Arthur George Suvorov, and Andrew Melatos. Neutron star deformation due to poloidal- toroidal magnetic fields of arbitrary multipole order: a new analytic approach. Mon. Not. Roy. Astron. Soc., 447:3475, 2015.
A. Bauswein, H. Th. Janka, and R. Oechslin. Testing Approximations of Thermal Effects in Neutron Star Merger Simulations. Phys. Rev. D, 82:084043, 2010.
Robert B. Wiringa, V. G. J. Stoks, and R. Schiavilla. An Accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C, 51:38–51, 1995.
Robert C. Duncan and Christopher Thompson. Formation of Very Strongly Magnetized Neutron Stars: Impli- cations for Gamma-Ray Bursts. Astrophys. J. Lett., 392:L9, June 1992.
S. Chandrasekhar and E. Fermi. Problems of Gravitational Stability in the Presence of a Magnetic Field. Astrophys. J., 118:116, July 1953.
Dong Lai. Matter in strong magnetic fields. Rev. Mod. Phys., 73:629–662, Aug 2001.
James M. Lattimer and Maddapa Prakash. Neutron Star Observations: Prognosis for Equation of State Con-
straints. Phys. Rept., 442:109–165, 2007.
Andreas Reisenegger. Stable magnetic equilibria and their evolution in the upper main sequence, white dwarfs,
and neutron stars. Astron. Astrophys., 499:557, 2009.
T. Akgu ̈n, A. Reisenegger, A. Mastrano, and P. Marchant. Stability of magnetic fields in non-barotropic stars:
an analytic treatment. Mon. Not. Roy. Astron. Soc., 433(3):2445–2466, August 2013.
R. Ciolfi, V. Ferrari, L. Gualtieri, and J. A. Pons. Relativistic models of magnetars: the twisted-torus magnetic
field configuration. Mon. Not. Roy. Astron. Soc., 397:913, 2009.
A. Mastrano, A. Melatos, A. Reisenegger, and T. Akgu ̈n. Gravitational wave emission from a magnetically
deformed non-barotropic neutron star. Mon. Not. Roy. Astron. Soc., 417(3):2288–2299, November 2011.
Kostas Glampedakis and Paul D. Lasky. The freedom to choose neutron star magnetic field equilibria: Table 1. Mon. Not. Roy. Astron. Soc., 463(3):2542–2552, December 2016.
[240] [241]
[242]
[243]
[244]
[245] [246]
[247] [248]
[249] [250] [251] [252]
[253] [254] [255] [256] [257] [258] [259] [260] [261] [262] [263]
S. Chandrasekhar. Axisymmetric Magnetic Fields and Fluid Motions. Astrophys. J., 124:232, July 1956.
J. Braithwaite. Axisymmetric magnetic fields in stars: relative strengths of poloidal and toroidal components.
Mon. Not. Roy. Astron. Soc., 397:763, 2009.
I. Wasserman and S. L. Shapiro. Masses, radii, and magnetic fields of pulsating X-ray sources : is the “standard”
model self-consistent ? Astrophys. J., 265:1036–1046, February 1983.
Steven Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity.
1972.
D. Papadopoulos and F. P. Esposito. Relativistic hydromagnetic wave propagation and instability in an
anisotropic universe. Astrophys. J., 257:10–16, June 1982.
John L. Friedman. Generic instability of rotating relativistic stars. Commun. Math. Phys., 62(3):247–278, 1978.
S. K. Lander. Magnetic Fields in Superconducting Neutron Stars. Phys. Rev. Lett., 110(7):071101, February 2013.
A. G. Suvorov. Ultra-compact X-ray binaries as dual-line gravitational-wave sources. Mon. Not. Roy. Astron. Soc., 503(4):5495–5503, 2021.
Vanessa Graber, Nils Andersson, Kostas Glampedakis, and Samuel K. Lander. Magnetic field evolution in superconducting neutron stars. Mon. Not. Roy. Astron. Soc., 453(1):671–681, October 2015.
P. Hut. Tidal evolution in close binary systems. Astron. Astrophys., 99:126–140, June 1981.
Jean-Paul Zahn. Tidal dissipation in binary systems. EAS Publ. Ser., 29:67, 2008.
Adam Pound. Second-order gravitational self-force. Phys. Rev. Lett., 109:051101, 2012.
Donato Bini, Thibault Damour, and Guillaume Faye. Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description. Phys. Rev. D, 85:124034, 2012.
M. E. Alexander. Tidal resonances in binary star systems. Mon. Not. Roy. Astron. Soc., 227:843–861, August 1987.
Thibault Damour, Piotr Jaranowski, and Gerhard Schaefer. Dynamical invariants for general relativistic two- body systems at the third postNewtonian approximation. Phys. Rev. D, 62:044024, 2000.
A. Buonanno and T. Damour. Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D, 59:084006, 1999.
G. Schaefer. Reduced Hamiltonian formalism for general-relativistic adiabatic fluids and applications. As- tronomische Nachrichten, 311(4):213–217, May 1990.
Philippe Landry and Eric Poisson. Tidal deformation of a slowly rotating material body: External metric. Physical Review D, 91(10):104018, 2015.
Eric Poisson and Jean Doucot. Gravitomagnetic tidal currents in rotating neutron stars. Phys. Rev. D, 95(4):044023, 2017.
Eric Poisson. Gravitomagnetic tidal resonance in neutron-star binary inspirals. Phys. Rev. D, 101(10):104028, 2020.
Justin E. Vines and Eanna E. Flanagan. Post-1-Newtonian quadrupole tidal interactions in binary systems. Phys. Rev. D, 88:024046, 2013.
V. Ferrari, L. Gualtieri, and A. Maselli. Tidal interaction in compact binaries: a post-Newtonian affine frame- work. Phys. Rev. D, 85:044045, 2012.
W. H. Press and S. A. Teukolsky. On formation of close binaries by two-body tidal capture. Astrophys. J., 213:183–192, April 1977.
J. P. Zahn. Reprint of 1977A&A....57..383Z. Tidal friction in close binary stars. Astron. Astrophys., 500:121–132, May 1977.
[264]
[265]
[266]
[267]
[268]
[269]
[270]
[271]
[272] [273]
[274]
[275]
[276]
[277]
[278]
[279]
[280]
[281]
[282] [283]
[284]
[285] [286]
Bibliography
Bart Willems. Excitation of oscillation modes by tides in close binaries: constraints on stellar and orbital parameters. Mon. Not. Roy. Astron. Soc., 346:968, 2003.
J. Fuller, D. W. Kurtz, G. Handler, and S. Rappaport. Tidally trapped pulsations in binary stars. Mon. Not. Roy. Astron. Soc., 498(4):5730–5744, November 2020.
J. L. Friedman and B. F. Schutz. On the stability of relativistic systems. Astrophys. J., 200:204–220, August 1975.
Steven L. Detweiler and J. R. Ipser. Variational principle and a stability-criterion for nonradial modes of pulsation of stellar models in general relativity. Astrophys. J., 185:685–707, 1973.
Dong Lai, Frederic A. Rasio, and Stuart L. Shapiro. Hydrodynamic Instability and Coalescence of Close Binary Systems. Astrophys. J. Lett., 406:L63, April 1993.
Dong Lai, Frederic A. Rasio, and Stuart L. Shapiro. Equilibrium, stability and orbital evolution of close binary systems. Astrophys. J., 423:344, 1994.
Dong Lai, Frederic A. Rasio, and Stuart L. Shapiro. Hydrodynamic instability and coalescence of binary neutron stars. Astrophys. J., 420:811–829, 1994.
Kip S. Thorne and Alfonso Campolattaro. Non-Radial Pulsation of General-Relativistic Stellar Models. I. Analytic Analysis for L ¿= 2. Astrophys. J., 149:591, September 1967.
Wasaburo Unno, Yoji Osaki, Hiroyasu Ando, H. Saio, and H. Shibahashi. Nonradial oscillations of stars. 1989. S. L. Bi, Y. Liao, and J. X. Wang. Influence of turbulent magnetic fields on mode frequencies. Astron. Astrophys.,
397:1069–1074, January 2003.
Marlene Herbrik and Kostas D. Kokkotas. Stability analysis of magnetized neutron stars - a semi-analytic
approach. Mon. Not. Roy. Astron. Soc., 466(2):1330–1347, April 2017. JamesB.Hartle.SlowlyRotatingRelativisticStars.I.EquationsofStructure.Astrophys.J.,150:1005,December
1967.
Shijun Yoshida and Umin Lee. Rotational modes of nonisentropic stars and the gravitational radiation driven
instability. Astrophys. J. Suppl., 129:353, 2000.
A. Passamonti, B. Haskell, N. Andersson, D. I. Jones, and I. Hawke. Oscillations of rapidly rotating stratified
neutron stars. Mon. Not. Roy. Astron. Soc., 394:730, 2009.
Daniela D. Doneva, Erich Gaertig, Kostas D. Kokkotas, and Christian Kru ̈ger. Gravitational wave asteroseis-
mology of fast rotating neutron stars with realistic equations of state. Phys. Rev. D, 88(4):044052, 2013.
B. Carter and H. Quintana. Foundations of general relativistic high-pressure elasticity theory. Proc. R. Soc.
Lond. A, 331:57–83, 1999.
B. Carter and H. Quintana. Stationary elastic rotational deformation of a relativistic neutron star model.
Astrophys. J., 202:511–522, December 1975.
Chongming Xu, Xuejun Wu, and Michael Soffel. General relativistic theory of elastic deformable astronomical
bodies. Phys. Rev. D, 63:043002, 2001. [Erratum: Phys.Rev.D 63, 109901 (2001)]. Lev Davidovich Landau and E. M. Lifshitz. The classical theory of fields. 1975.
Nathan K. Johnson-McDaniel and Benjamin J. Owen. Maximum elastic deformations of relativistic stars. Phys. Rev. D, 88:044004, 2013.
N. Andersson and W. C. G. Ho. Using gravitational-wave data to constrain dynamical tides in neutron star binaries. Phys. Rev. D, 97(2):023016, 2018.
Ehud Nakar. Short-Hard Gamma-Ray Bursts. Phys. Rept., 442:166–236, 2007.
Omer Bromberg, Ehud Nakar, Tsvi Piran, and Re’em Sari. Short versus Long and Collapsars versus Non- collapsars: A Quantitative Classification of Gamma-Ray Bursts. Astrophys. J., 764(2):179, February 2013.
[287] [288]
[289]
[290]
[291]
[292]
[293]
[294]
[295]
[296]
[297]
[298]
[299]
[300] [301]
[302] [303] [304] [305]
[306] [307] [308]
Edo Berger. Short-Duration Gamma-Ray Bursts. Ann. Rev. Astron. Astrophys., 52:43–105, 2014.
W. S. Paciesas et al. The Fourth batse gamma-ray burst catalog (revised). Astrophys. J. Suppl., 122:465–495,
1999.
Christian K. Jespersen, Johann B. Severin, Charles L. Steinhardt, Jonas Vinther, Johan P. U. Fynbo, Jonatan Selsing, and Darach Watson. An Unambiguous Separation of Gamma-Ray Bursts into Two Classes from Prompt Emission Alone. Astrophys. J. Lett., 896(2):L20, 2020.
D. Burlon, G. Ghirlanda, G. Ghisellini, D. Lazzati, L. Nava, M. Nardini, and A. Celotti. Precursors in Swift Gamma Ray Bursts with redshift. Astrophys. J. Lett., 685:L19, 2008.
Bing Zhang. The delay time of gravitational wave — gamma-ray burst associations. Front. Phys. (Beijing), 14(6):64402, 2019.
Huan Yang, William E. East, Vasileios Paschalidis, Frans Pretorius, and Raissa F. P. Mendes. Evolution of Highly Eccentric Binary Neutron Stars Including Tidal Effects. Phys. Rev. D, 98(4):044007, 2018.
Jose Nijaid Arredondo and Nicholas Loutrel. Neutron stars in the effective fly-by framework: f-mode re- summation. Class. Quant. Grav., 38(16):165001, 2021.
Wataru Ogawaguchi and Yasufumi Kojima. Evolution of close neutron star binaries. Prog. Theor. Phys., 96:901–916, 1996.
Masaru Shibata. Effects of tidal resonances in coalescing compact binary systems. Prog. Theor. Phys., 91:871– 884, 1994.
Nevin N. Weinberg, Phil Arras, and Joshua Burkart. An instability due to the nonlinear coupling of p-modes to g-modes: Implications for coalescing neutron star binaries. Astrophys. J., 769:121, 2013.
Reed Essick, Salvatore Vitale, and Nevin N. Weinberg. Impact of the tidal p-g instability on the gravitational wave signal from coalescing binary neutron stars. Phys. Rev. D, 94(10):103012, 2016.
B. P. Abbott et al. Constraining the p-Mode-g-Mode Tidal Instability with GW170817. Phys. Rev. Lett., 122(6):061104, 2019.
Steven Reyes and Duncan A. Brown. Constraints on Nonlinear Tides due to p–g Mode Coupling from the Neutron Star Merger GW170817. Astrophys. J., 894(1):41, 2020.
Curt Cutler and Lee Lindblom. The Effect of Viscosity on Neutron Star Oscillations. ApJ, 314:234, March 1987. Dong Lai. Secular instability of g modes in rotating neutron stars. Mon. Not. Roy. Astron. Soc., 307:1001–1007,
1999.
Konstantinos N. Gourgouliatos and Samuel K. Lander. Axisymmetric magneto-plastic evolution of neutron-star
crusts. Mon. Not. Roy. Astron. Soc., 506(3):3578–3587, 2021.
Kip S. Thorne. Nonradial Pulsation of General-Relativistic Stellar Models. III. Analytic and Numerical Results
for Neutron Stars. Astrophys. J., 158:1, October 1969.
James B. Hartle. Slowly-Rotating Relativistic Stars.IV. Rotational Energy and Moment of Inertia for Stars in
Differential Rotation. Astrophys. J., 161:111, July 1970.
I. A. Morrison, Thomas W. Baumgarte, S. L. Shapiro, and V. R. Pandharipande. The Moment of inertia of the binary pulsar J0737-3039A: Constraining the nuclear equation of state. Astrophys. J. Lett., 617:L135–L138, 2004.
R. Belvedere, K. Boshkayev, Jorge A. Rueda, and R. Ruffini. Uniformly rotating neutron stars in the global and local charge neutrality cases. Nucl. Phys. A, 921:33–59, 2014.
Feryal O ̈zel and Paulo Freire. Masses, Radii, and the Equation of State of Neutron Stars. Ann. Rev. Astron. Astrophys., 54:401–440, 2016.
D. R. Lorimer. Binary and Millisecond Pulsars. Living Rev. Rel., 11:8, 2008.
[309]
[310]
[311]
[312] [313]
[314]
[315]
[316]
[317]
[318]
[319]
[320]
[321]
[322]
[323]
[324]
[325]
[326]
[327]
[328]
Bibliography
Bu ̈lent Kiziltan, Athanasios Kottas, Maria De Yoreo, and Stephen E. Thorsett. The Neutron Star Mass Distri- bution. Astrophys. J., 778:66, 2013.
Thomas M. Koshut, Chryssa Kouveliotou, William S. Paciesas, Jan van Paradijs, Geoffrey N. Pendleton, Michael S. Briggs, Gerald J. Fishman, and Charles A. Meegan. Gamma-Ray Burst Precursor Activity as Observed with BATSE. Astrophys. J., 452:145, October 1995.
Marc Favata. Systematic parameter errors in inspiraling neutron star binaries. Phys. Rev. Lett., 112:101101, 2014.
Taylor Binnington and Eric Poisson. Relativistic theory of tidal Love numbers. Phys. Rev. D, 80:084018, 2009.
Tim Dietrich, Maximiliano Ujevic, Wolfgang Tichy, Sebastiano Bernuzzi, and Bernd Bruegmann. Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the mass-ratio. Phys. Rev. D, 95(2):024029, 2017.
A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tanvir, and A. J. Levan. Signatures of magnetar central engines in short GRB lightcurves. Mon. Not. Roy. Astron. Soc., 430:1061, 2013.
B. P. Gompertz, P. T. O’Brien, and G. A. Wynn. Magnetar powered GRBs: Explaining the extended emission and X-ray plateau of short GRB light curves. Mon. Not. Roy. Astron. Soc., 438(1):240–250, 2014.
Wei-Hong Gao. Short-living supermassive magnetar model for the early X-ray flares following short GRBs. Chin. J. Astron. Astrophys., 6:513–516, 2006.
Riccardo Ciolfi, Wolfgang Kastaun, Jay Vijay Kalinani, and Bruno Giacomazzo. First 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger. Phys. Rev. D, 100(2):023005, 2019.
Joshua A. Faber, Philippe Grandclement, Frederic A. Rasio, and Keisuke Taniguchi. Measuring neutron star radii with gravitational wave detectors. Phys. Rev. Lett., 89:231102, 2002.
Andreas Bauswein and Nikolaos Stergioulas. Spectral classification of gravitational-wave emission and equation of state constraints in binary neutron star mergers. J. Phys. G, 46(11):113002, 2019.
Michele Vallisneri. Prospects for gravitational wave observations of neutron star tidal disruption in neutron star / black hole binaries. Phys. Rev. Lett., 84:3519, 2000.
V. Ferrari, L. Gualtieri, and F. Pannarale. Neutron star tidal disruption in mixed binaries: the imprint of the equation of state. Phys. Rev. D, 81:064026, 2010.
Thomas W. Baumgarte and Stuart L. Shapiro. Numerical relativity and compact binaries. Phys. Rept., 376:41– 131, 2003.
Kostas D. Kokkotas. High frequency sources of gravitational waves. Nucl. Phys. B Proc. Suppl., 138:433–435, 2005.
C. J. Moore, R. H. Cole, and C. P. L. Berry. Gravitational-wave sensitivity curves. Class. Quant. Grav., 32(1):015014, 2015.
Kai Schmitz. New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions. JHEP, 01:097, 2021.
Burkhard Zink, Paul D. Lasky, and Kostas D. Kokkotas. Are gravitational waves from giant magnetar flares observable? Phys. Rev. D, 85:024030, 2012.
William E. East, Vasileios Paschalidis, Frans Pretorius, and Antonios Tsokaros. Binary neutron star mergers: Effects of spin and post-merger dynamics. Phys. Rev. D, 100(12):124042, December 2019.
L. Jens Papenfort, Elias R. Most, Samuel Tootle, and Luciano Rezzolla. Impact of extreme spins and mass ratios on the post-merger observables of high-mass binary neutron stars. arXiv e-prints, page arXiv:2201.03632, January 2022.
[329] [330] [331] [332]
[333]
[334]
[335]
[336]
[337]
[338]
[339]
[340]
[341] [342]
[343] [344] [345]
[346]
Eemeli Annala, Tyler Gorda, Aleksi Kurkela, and Aleksi Vuorinen. Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. Phys. Rev. Lett., 120(17):172703, April 2018.
Bhaskar Biswas, Rana Nandi, Prasanta Char, Sukanta Bose, and Nikolaos Stergioulas. GW190814: on the properties of the secondary component of the binary. MNRAS, 505(2):1600–1606, August 2021.
A. Kanakis-Pegios, P. S. Koliogiannis, and Ch. C. Moustakidis. Thermal effects on tidal deformability in the last orbits of an inspiraling binary neutron star system. arXiv e-prints, page arXiv:2202.01820, February 2022.
E. Fonseca, H. T. Cromartie, T. T. Pennucci, P. S. Ray, A. Yu. Kirichenko, S. M. Ransom, P. B. Demorest, I. H. Stairs, Z. Arzoumanian, L. Guillemot, A. Parthasarathy, M. Kerr, I. Cognard, P. T. Baker, H. Blumer, P. R. Brook, M. DeCesar, T. Dolch, F. A. Dong, E. C. Ferrara, W. Fiore, N. Garver-Daniels, D. C. Good, R. Jennings, M. L. Jones, V. M. Kaspi, M. T. Lam, D. R. Lorimer, J. Luo, A. McEwen, J. W. McKee, M. A. McLaughlin, N. McMann, B. W. Meyers, A. Naidu, C. Ng, D. J. Nice, N. Pol, H. A. Radovan, B. Shapiro-Albert, C. M. Tan, S. P. Tendulkar, J. K. Swiggum, H. M. Wahl, and W. W. Zhu. Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620. ApJ, 915(1):L12, July 2021.
J. G. Martinez, K. Stovall, P. C. C. Freire, J. S. Deneva, F. A. Jenet, M. A. McLaughlin, M. Bagchi, S. D. Bates, and A. Ridolfi. Pulsar J0453+1559: A Double Neutron Star System with a Large Mass Asymmetry. ApJ, 812(2):143, October 2015.
Paul D. Lasky and Kostas Glampedakis. Observationally constraining gravitational wave emission from short gamma-ray burst remnants. MNRAS, 458(2):1660–1670, May 2016.
Daniela D. Doneva, Kostas D. Kokkotas, and Pantelis Pnigouras. Gravitational wave afterglow in binary neutron star mergers. Phys. Rev. D, 92(10):104040, November 2015.
Riccardo Ciolfi. The key role of magnetic fields in binary neutron star mergers. General Relativity and Gravi- tation, 52(6):59, June 2020.
A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tanvir, and A. J. Levan. Signatures of magnetar central engines in short GRB light curves. MNRAS, 430(2):1061–1087, April 2013.
Arthur G. Suvorov and Kostas D. Kokkotas. Evidence for magnetar precession in X-ray afterglows of gamma-ray bursts. Astrophys. J. Lett., 892(2):L34, 2020.
A.G.SuvorovandK.D.Kokkotas.Precessingmagnetarsascentralenginesinshortgamma-raybursts.MNRAS, 502(2):2482–2494, April 2021.
Ph. Podsiadlowski, N. Langer, A. J. T. Poelarends, S. Rappaport, A. Heger, and E. Pfahl. The Effects of Binary Evolution on the Dynamics of Core Collapse and Neutron Star Kicks. ApJ, 612(2):1044–1051, September 2004.
Anthony L. Piro. Magnetic Interactions in Coalescing Neutron Star Binaries. ApJ, 755(1):80, August 2012. Dong Lai. DC Circuit Powered by Orbital Motion: Magnetic Interactions in Compact Object Binaries and
Exoplanetary Systems. ApJ, 757(1):L3, September 2012.
A. Passamonti and N. Andersson. Towards real neutron star seismology: accounting for elasticity and superflu-
idity. MNRAS, 419(1):638–655, January 2012.
S. Yoshida and U. Lee. Nonradial oscillations of neutron stars with a solid crust. Analysis in the relativistic
Cowling approximation. A&A, 395:201–208, November 2002.
Cosmin Stachie, Tito Dal Canton, Nelson Christensen, Marie-Anne Bizouard, Michael Briggs, Eric Burns, Jordan Camp, and Michael Coughlin. Searches for Modulated {}-Ray Precursors to Compact Binary Mergers in Fermi-GBM Data. arXiv e-prints, page arXiv:2112.04555, December 2021.
M. Burgay, N. D’Amico, A. Possenti, R. N. Manchester, A. G. Lyne, B. C. Joshi, M. A. McLaughlin, M. Kramer, J. M. Sarkissian, F. Camilo, V. Kalogera, C. Kim, and D. R. Lorimer. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature, 426(6966):531–533, December 2003.
[347]
[348]
[349]
[350]
[351]
[352]
[353]
[354]
[355]
[356]
[357]
[358]
[359]
[360]
[361]
[362]
[363]
[364]
[365]
Bibliography
Alan G. Wiseman. Coalescing binary systems of compact objects to (post)5/2 Newtonian order. 2. Higher order wave forms and radiation recoil. Phys. Rev. D, 46:1517–1539, 1992.
Eric Poisson and Clifford M. Will. Gravitational waves from inspiraling compact binaries: Parameter estimation using second postNewtonian wave forms. Phys. Rev. D, 52:848–855, 1995.
Justin Vines, Eanna E. Flanagan, and Tanja Hinderer. Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals. Phys. Rev. D, 83:084051, 2011.
Andreas Guerra Chaves and Tanja Hinderer. Probing the equation of state of neutron star matter with gravi- tational waves from binary inspirals in light of GW170817: a brief review. J. Phys. G, 46(12):123002, 2019.
Tim Dietrich, Sebastiano Bernuzzi, and Wolfgang Tichy. Closed-form tidal approximants for binary neutron star gravitational waveforms constructed from high-resolution numerical relativity simulations. Phys. Rev. D, 96(12):121501, 2017.
Luc Blanchet, Thibault Damour, Bala R. Iyer, Clifford M. Will, and Alan G. Wiseman. Gravitational radiation damping of compact binary systems to second postNewtonian order. Phys. Rev. Lett., 74:3515–3518, 1995.
K. G. Arun, Alessandra Buonanno, Guillaume Faye, and Evan Ochsner. Higher-order spin effects in the ampli- tude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms. Phys. Rev. D, 79:104023, 2009. [Erratum: Phys.Rev.D 84, 049901 (2011)].
Tim Dietrich et al. Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects. Phys. Rev. D, 99(2):024029, 2019.
William G. Laarakkers and Eric Poisson. Quadrupole moments of rotating neutron stars. Astrophys. J., 512:282– 287, 1999.
Eric Poisson. Gravitational waves from inspiraling compact binaries: The Quadrupole moment term. Phys. Rev. D, 57:5287–5290, 1998.
Michele Levi and Jan Steinhoff. Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals. JCAP, 12:003, 2014.
Michalis Agathos, Jeroen Meidam, Walter Del Pozzo, Tjonnie G. F. Li, Marco Tompitak, John Veitch, Salvatore Vitale, and Chris Van Den Broeck. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars. Phys. Rev. D, 92(2):023012, 2015.
Antonios Tsokaros, Milton Ruiz, Vasileios Paschalidis, Stuart L. Shapiro, and Ko ̄ji Uryu ̄. Effect of spin on the inspiral of binary neutron stars. Phys. Rev. D, 100(2):024061, 2019.
Reetika Dudi, Tim Dietrich, Alireza Rashti, Bernd Bruegmann, Jan Steinhoff, and Wolfgang Tichy. High- accuracy simulations of highly spinning binary neutron star systems. arXiv eprint = 2108.10429, 8 2021.
Ian Harry and Tanja Hinderer. Observing and measuring the neutron-star equation-of-state in spinning binary neutron star systems. Class. Quant. Grav., 35(14):145010, 2018.
Thomas E. Riley et al. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. Astrophys. J. Lett., 918(2):L27, 2021.
Margherita Fasano, Tiziano Abdelsalhin, Andrea Maselli, and Valeria Ferrari. Constraining the Neutron Star Equation of State Using Multiband Independent Measurements of Radii and Tidal Deformabilities. Phys. Rev. Lett., 123(14):141101, 2019.
Curt Cutler et al. The Last three minutes: issues in gravitational wave measurements of coalescing compact binaries. Phys. Rev. Lett., 70:2984–2987, 1993.
Nai-Bo Zhang and Bao-An Li. GW190814’s Secondary Component with Mass 2.50-2.67 M ⊙ as a Superfast Pulsar. Astrophys. J., 902(1):38, 2020.
[366]
[367]
[368]
[369]
[370]
[371]
[372]
[373]
[374]
[375]
[376]
[377]
[378]
[379]
[380]
[381]
[382]
Elias R. Most, L. Jens Papenfort, Lukas R. Weih, and Luciano Rezzolla. A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star. Mon. Not. Roy. Astron. Soc., 499(1):L82–L86, 2020.
SergeDroz,DanielJ.Knapp,EricPoisson,andBenjaminJ.Owen.Gravitationalwavesfrominspiralingcompact binaries: Validity of the stationary phase approximation to the Fourier transform. Phys. Rev. D, 59:124016, 1999.
Luca Baiotti, Thibault Damour, Bruno Giacomazzo, Alessandro Nagar, and Luciano Rezzolla. Accurate nu- merical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models. Phys. Rev. D, 84:024017, 2011.
Luc Blanchet. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries. Living Rev. Rel., 17:2, 2014.
Thibault Damour and Alessandro Nagar. An Improved analytical description of inspiralling and coalescing black-hole binaries. Phys. Rev. D, 79:081503, 2009.
Thibault Damour, Alessandro Nagar, and Sebastiano Bernuzzi. Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion. Phys. Rev. D, 87(8):084035, 2013.
Kyohei Kawaguchi, Kenta Kiuchi, Koutarou Kyutoku, Yuichiro Sekiguchi, Masaru Shibata, and Keisuke Taniguchi. Frequency-domain gravitational waveform models for inspiraling binary neutron stars. Phys. Rev. D, 97(4):044044, 2018.
Tim Dietrich, Anuradha Samajdar, Sebastian Khan, Nathan K. Johnson-McDaniel, Reetika Dudi, and Wolfgang Tichy. Improving the NRTidal model for binary neutron star systems. Phys. Rev. D, 100(4):044003, 2019.
Michael Boyle, Duncan A. Brown, Lawrence E. Kidder, Abdul H. Mroue, Harald P. Pfeiffer, Mark A. Scheel, Gregory B. Cook, and Saul A. Teukolsky. High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions. Phys. Rev. D, 76:124038, 2007.
Kenta Hotokezaka, Koutarou Kyutoku, Hirotada Okawa, and Masaru Shibata. Exploring tidal effects of co- alescing binary neutron stars in numerical relativity. II. Long-term simulations. Phys. Rev. D, 91(6):064060, 2015.
Sebastiano Bernuzzi, Alessandro Nagar, Tim Dietrich, and Thibault Damour. Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger. Phys. Rev. Lett., 114(16):161103, 2015.
Thibault Damour and Alessandro Nagar. Effective One Body description of tidal effects in inspiralling compact binaries. Phys. Rev. D, 81:084016, 2010.
Donato Bini, Thibault Damour, and Guillaume Faye. Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description. Phys. Rev. D, 85:124034, 2012.
Benjamin D. Lackey, Sebastiano Bernuzzi, Chad R. Galley, Jeroen Meidam, and Chris Van Den Broeck. Effective-one-body waveforms for binary neutron stars using surrogate models. Phys. Rev. D, 95(10):104036, 2017.
Lawrence E. Kidder, Clifford M. Will, and Alan G. Wiseman. Spin effects in the inspiral of coalescing compact binaries. Phys. Rev. D, 47(10):R4183–R4187, 1993.
Theocharis A. Apostolatos, Curt Cutler, Gerald J. Sussman, and Kip S. Thorne. Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. Phys. Rev. D, 49(12):6274–6297, June 1994.
Andrea Maselli, Leonardo Gualtieri, Francesco Pannarale, and Valeria Ferrari. On the validity of the adiabatic approximation in compact binary inspirals. Phys. Rev. D, 86
[383]
[384]
[385]
[386]
[387]
[388]
[389]
[390]
[391]
[392]
[393]
[394]
[395]
[396]
[397]
[398]
[399]
[400]
[401] [402]
Bibliography
LeslieWade,JolienD.E.Creighton,EvanOchsner,BenjaminD.Lackey,BenjaminF.Farr,TysonB.Littenberg, and Vivien Raymond. Systematic and statistical errors in a bayesian approach to the estimation of the neutron- star equation of state using advanced gravitational wave detectors. Phys. Rev. D, 89(10):103012, 2014.
Gerhard Schaefer. The Gravitational Quadrupole Radiation Reaction Force and the Canonical Formalism of Adm. Annals Phys., 161:81–100, 1985.
Tim Dietrich, Tanja Hinderer, and Anuradha Samajdar. Interpreting Binary Neutron Star Mergers: Describing the Binary Neutron Star Dynamics, Modelling Gravitational Waveforms, and Analyzing Detections. Gen. Rel. Grav., 53(3):27, 2021.
Benjamin D. Lackey, Michael Pu ̈rrer, Andrea Taracchini, and Sylvain Marsat. Surrogate model for an aligned- spin effective one body waveform model of binary neutron star inspirals using Gaussian process regression. Phys. Rev. D, 100(2):024002, 2019.
Sizheng Ma, Hang Yu, and Yanbei Chen. Detecting resonant tidal excitations of Rossby modes in coalescing neutron-star binaries with third-generation gravitational-wave detectors. Phys. Rev. D, 103(6):063020, 2021.
James M. Lattimer and Bernard F. Schutz. Constraining the equation of state with moment of inertia measure- ments. Astrophys. J., 629:979–984, 2005.
Tianqi Zhao and James M. Lattimer. Tidal Deformabilities and Neutron Star Mergers. Phys. Rev. D, 98(6):063020, 2018.
Christian J. Kru ̈ger and Kostas D. Kokkotas. Dynamics of fast rotating neutron stars: An approach in the Hilbert gauge. Phys. Rev. D, 102(6):064026, September 2020.
Christian J. Kru ̈ger, Kostas D. Kokkotas, Praveen Manoharan, and Sebastian H. Vo ̈lkel. Fast Rotating Neutron Stars: Oscillations and Instabilities. Frontiers in Astronomy and Space Sciences, 8:166, September 2021.
Mark Hannam, Duncan A. Brown, Stephen Fairhurst, Chris L. Fryer, and Ian W. Harry. When can gravitational- wave observations distinguish between black holes and neutron stars? Astrophys. J. Lett., 766:L14, 2013.
Paolo Pani, Leonardo Gualtieri, Andrea Maselli, and Valeria Ferrari. Tidal deformations of a spinning compact object. Phys. Rev. D, 92(2):024010, 2015.
Lee Samuel Finn and David F. Chernoff. Observing binary inspiral in gravitational radiation: One interferom- eter. Phys. Rev. D, 47:2198–2219, 1993.
R. Abbott et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett., 896(2):L44, 2020.
Ka-Wai Lo and Lap-Ming Lin. The spin parameter of uniformly rotating compact stars. Astrophys. J., 728:12, 2011.
Tetsuro Yamamoto, Masaru Shibata, and Keisuke Taniguchi. Simulating coalescing compact binaries by a new code (SACRA). Phys. Rev. D, 78(6):064054, September 2008.
Elias R. Most, L. Jens Papenfort, Antonios Tsokaros, and Luciano Rezzolla. Impact of high spins on the ejection of mass in GW170817. Astrophys. J., 884:40, 2019.
Milton Ruiz, Antonios Tsokaros, Vasileios Paschalidis, and Stuart L. Shapiro. Effects of spin on magnetized binary neutron star mergers and jet launching. Phys. Rev. D, 99(8):084032, 2019.
Tim Dietrich and Maximiliano Ujevic. Modeling dynamical ejecta from binary neutron star mergers and impli- cations for electromagnetic counterparts. Class. Quant. Grav., 34(10):105014, 2017.
Kent Yagi and Nicolas Yunes. I-Love-Q. Science, 341:365–368, 2013.
Francesco Zappa, Sebastiano Bernuzzi, David Radice, Albino Perego, and Tim Dietrich. Gravitational-wave luminosity of binary neutron stars mergers. Phys. Rev. Lett., 120(11):111101, 2018.
:044032, 2012.
[403] [404] [405] [406] [407] [408] [409] [410] [411] [412]
[413] [414]
[415]
[416] [417]
[418] [419] [420] [421]
[422]
Thibault Damour and Alessandro Nagar. Relativistic tidal properties of neutron stars. Phys. Rev. D, 80:084035, 2009.
Eric Poisson. Gravitomagnetic Love tensor of a slowly rotating body: post-Newtonian theory. Phys. Rev. D, 102(6):064059, 2020.
Pawan Kumar Gupta, Jan Steinhoff, and Tanja Hinderer. Relativistic effective action of dynamical gravitomag- netic tides for slowly rotating neutron stars. Phys. Rev. Res., 3(1):013147, 2021.
Eric Poisson and Cyann Buisson. Tidal driving of inertial modes of Maclaurin spheroids. Phys. Rev. D, 102(10):104005, 2020.
Gon ̧calo Castro, Leonardo Gualtieri, Andrea Maselli, and Paolo Pani. Impact and detectability of spin-tidal couplings in neutron star inspirals. arXiv e-prints, page arXiv:2204.12510, April 2022.
Thibault Damour and Gilles Esposito-Farese. Tensor - scalar gravity and binary pulsar experiments. Phys. Rev. D, 54:1474–1491, 1996.
Ivan Zh. Stefanov, Stoytcho S. Yazadjiev, and Michail D. Todorov. Phases of 4D scalar-tensor black holes coupled to Born-Infeld nonlinear electrodynamics. Mod. Phys. Lett. A, 23:2915–2931, 2008.
Daniela D. Doneva, Stoytcho S. Yazadjiev, Kostas D. Kokkotas, and Ivan Zh. Stefanov. Quasi-normal modes, bifurcations and non-uniqueness of charged scalar-tensor black holes. Phys. Rev. D, 82:064030, 2010.
Vitor Cardoso, Isabella P. Carucci, Paolo Pani, and Thomas P. Sotiriou. Black holes with surrounding matter in scalar-tensor theories. Phys. Rev. Lett., 111:111101, 2013.
K. Lazaridis, N. Wex, A. Jessner, M. Kramer, B. W. Stappers, G. H. Janssen, G. Desvignes, M. B. Purver, I. Cognard, G. Theureau, A. G. Lyne, C. A. Jordan, and J. A. Zensus. Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant. Mon. Not. Roy. Astron. Soc., 400(2):805–814, December 2009.
John Antoniadis et al. A Massive Pulsar in a Compact Relativistic Binary. Science, 340:6131, 2013.
Paulo C. C. Freire, Norbert Wex, Gilles Esposito-Farese, Joris P. W. Verbiest, Matthew Bailes, Bryan A. Jacoby, Michael Kramer, Ingrid H. Stairs, John Antoniadis, and Gemma H. Janssen. The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity. Mon. Not. Roy. Astron. Soc., 423:3328, 2012.
Lijing Shao, Noah Sennett, Alessandra Buonanno, Michael Kramer, and Norbert Wex. Constraining non- perturbative strong-field effects in scalar-tensor gravity by combining pulsar timing and laser-interferometer gravitational-wave detectors. Phys. Rev. X, 7(4):041025, 2017.
D. Popchev. Master thesis, 2015.
Fethi M. Ramazanog ̆lu and Frans Pretorius. Spontaneous Scalarization with Massive Fields. Phys. Rev. D, 93(6):064005, 2016.
Stoytcho S. Yazadjiev, Daniela D. Doneva, and Dimitar Popchev. Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field. Phys. Rev. D, 93(8):084038, 2016.
Roxana Rosca-Mead, Christopher J. Moore, Ulrich Sperhake, Michalis Agathos, and Davide Gerosa. Structure of neutron stars in massive scalar-tensor gravity. Symmetry, 12(9):1384, 2020.
Thibault Damour and Gilles Esposito-Farese. Tensor multiscalar theories of gravitation. Class. Quant. Grav., 9:2093–2176, 1992.
Michael Horbatsch, Hector O. Silva, Davide Gerosa, Paolo Pani, Emanuele Berti, Leonardo Gualtieri, and Ulrich Sperhake. Tensor-multi-scalar theories: relativistic stars and 3 + 1 decomposition. Class. Quant. Grav., 32(20):204001, 2015.
Stoytcho S. Yazadjiev and Daniela D. Doneva. Dark compact objects in massive tensor-multi-scalar theories of gravity. Phys. Rev. D, 99(8):084011, 2019.
[423]
[424]
[425]
[426]
[427]
[428]
[429]
[430]
[431]
[432]
[433]
[434]
[435]
[436]
[437] [438]
[439] [440]
[441] [442]
[443] [444]
Bibliography
Daniela D. Doneva and Stoytcho S. Yazadjiev. Mixed configurations of tensor-multiscalar solitons and neutron stars. Phys. Rev. D, 101(2):024009, 2020.
Daniela D. Doneva and Stoytcho S. Yazadjiev. Topological neutron stars in tensor-multi-scalar theories of gravity. Phys. Rev. D, 101(6):064072, 2020.
S. Gottlober, H. J. Schmidt, and Alexei A. Starobinsky. Sixth Order Gravity and Conformal Transformations. Class. Quant. Grav., 7:893, 1990.
Lucas G. Collodel, Daniela D. Doneva, and Stoytcho S. Yazadjiev. Rotating tensor-multiscalar solitons. Phys. Rev. D, 101(4):044021, 2020.
Daniela D. Doneva, Stoytcho S. Yazadjiev, and Kostas D. Kokkotas. Stability of topological neutron stars. Phys. Rev. D, 102(4):044043, 2020.
Daniela D. Doneva and Stoytcho S. Yazadjiev. Nontopological spontaneously scalarized neutron stars in tensor- multiscalar theories of gravity. Phys. Rev. D, 101(10):104010, 2020.
Hajime Sotani. Scalar gravitational waves from relativistic stars in scalar-tensor gravity. Phys. Rev. D, 89(6):064031, 2014.
Raissa F. P. Mendes and N ́estor Ortiz. New class of quasinormal modes of neutron stars in scalar-tensor gravity. Phys. Rev. Lett., 120(20):201104, 2018.
H. Th. Janka, Th. Zwerger, and R. Moenchmeyer. Does artificial viscosity destroy prompt type-II supernova explosions? Astron. Astrophys., 268(1):360–368, February 1993.
T. Zwerger and E. Mueller. Dynamics and gravitational wave signature of axisymmetric rotational core collapse. Astron. Astrophys., 320:209–227, 1997.
Harald Dimmelmeier, Jose A. Font, and Ewald Muller. Relativistic simulations of rotational core collapse. 2. Collapse dynamics and gravitational radiation. Astron. Astrophys., 393:523–542, 2002.
Evan O’Connor and Christian D. Ott. A New Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes. Class. Quant. Grav., 27:114103, 2010.
Davide Gerosa, Ulrich Sperhake, and Christian D. Ott. Numerical simulations of stellar collapse in scalar-tensor theories of gravity. Class. Quant. Grav., 33(13):135002, 2016.
Jocelyn S. Read, Benjamin D. Lackey, Benjamin J. Owen, and John L. Friedman. Constraints on a phenomeno- logically parameterized neutron-star equation of state. Phys. Rev. D, 79:124032, 2009.
Johannes Ruoff. The Numerical Evolution of Neutron Star Oscillations. Master’s thesis, -, October 2000. FrancescBanyuls,Jos ́eA.Font,Jos ́eM.Ib ́an ̃ez,Jos ́eM.Mart ́ı,andJuanA.Miralles.Numerical{3+1}General
Relativistic Hydrodynamics: A Local Characteristic Approach. Astrophys. J., 476(1):221–231, February 1997. Jose A. Font. Numerical hydrodynamics in general relativity. Living Rev. Rel., 3:2, 2000.
Evan O’Connor. An Open-Source Neutrino Radiation Hydrodynamics Code for Core-Collapse Supernovae. Astrophys. J. Suppl., 219(2):24, 2015.
Patrick Chi-Kit Cheong and Tjonnie Guang Feng Li. Numerical studies on core collapse supernova in self- interacting massive scalar-tensor gravity. Phys. Rev. D, 100(2):024027, 2019.
Roxana Rosca-Mead, Christopher J. Moore, Michalis Agathos, and Ulrich Sperhake. Inverse-chirp signals and spontaneous scalarisation with self-interacting potentials in stellar collapse. Class. Quant. Grav., 36(13):134003, 2019.
A. O. Barvinsky and G. A. Vilkovisky. The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity. Phys. Rept., 119:1–74, 1985.
Michael S. Ruf and Christian F. Steinwachs. One-loop divergences for f(R) gravity. Phys. Rev. D, 97(4):044049, 2018.
[445]
[446] [447]
[448] [449] [450]
[451]
[452]
[453]
[454]
[455]
[456]
[457]
[458]
[459]
[460]
[461]
[462] [463]
[464]
[465]
Justin Alsing, Emanuele Berti, Clifford M. Will, and Helmut Zaglauer. Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity. Phys. Rev. D, 85:064041, 2012.
M. Kramer et al. Strong-Field Gravity Tests with the Double Pulsar. Phys. Rev. X, 11(4):041050, 2021. Junjie Zhao, Paulo C. C. Freire, Michael Kramer, Lijing Shao, and Norbert Wex. Closing a spontaneous-
scalarization window with binary pulsars. arXiv e-prints, page arXiv:2201.03771, January 2022.
B. P. Abbott et al. Tests of general relativity with GW150914. Phys. Rev. Lett., 116(22):221101, 2016. [Erratum:
Phys.Rev.Lett. 121, 129902 (2018)].
Carlos A. R. Herdeiro and Eugen Radu. Asymptotically flat black holes with scalar hair: a review. Int. J. Mod.
Phys. D, 24(09):1542014, 2015.
Daniela D. Doneva and Stoytcho S. Yazadjiev. Beyond the spontaneous scalarization: New fully nonlinear mech- anism for the formation of scalarized black holes and its dynamical development. Phys. Rev. D, 105(4):L041502, 2022.
Hajime Sotani and Kostas D. Kokkotas. Maximum mass limit of neutron stars in scalar-tensor gravity. Phys. Rev. D, 95(4):044032, 2017.
Burkhard Kampfer. On the Possibility of Stable Quark and Pion Condensed Stars. J. Phys. A, 14:L471–L475, 1981.
Norman K. Glendenning and Christiane Kettner. Nonidentical neutron star twins. Astron. Astrophys., 353:L9, 2000.
K. Schertler, C. Greiner, J. Schaffner-Bielich, and M. H. Thoma. Quark phases in neutron stars and a ’third family’ of compact stars as a signature for phase transitions. Nucl. Phys. A, 677:463–490, 2000.
Jurgen Schaffner-Bielich, Matthias Hanauske, Horst Stoecker, and Walter Greiner. Phase transition to hyperon matter in neutron stars. Phys. Rev. Lett., 89:171101, 2002.
Jerome Novak and Jose M. Ibanez. Gravitational waves from the collapse and bounce of a stellar core in tensor scalar gravity. Astrophys. J., 533:392–405, 2000.
Jerome Novak. Spherical neutron star collapse in tensor - scalar theory of gravity. Phys. Rev. D, 57:4789–4801, 1998.
RoxanaRosca-Mead,UlrichSperhake,ChristopherJ.Moore,MichalisAgathos,DavideGerosa,andChristianD. Ott. Core collapse in massive scalar-tensor gravity. Phys. Rev. D, 102(4):044010, 2020.
Raissa F. P. Mendes, N ́estor Ortiz, and Nikolaos Stergioulas. Nonlinear dynamics of oscillating neutron stars in scalar-tensor gravity. Phys. Rev. D, 104(10):104036, 2021.
Katerina Chatziioannou and Sophia Han. Studying strong phase transitions in neutron stars with gravitational waves. Phys. Rev. D, 101(4):044019, 2020.
Bing Zhang and Peter Meszaros. Gamma-ray burst afterglow with continuous energy injection: Signature of a highly magnetized millisecond pulsar. Astrophys. J. Lett., 552:L35–L38, 2001.
Sebastiano Bernuzzi. Neutron Star Merger Remnants. Gen. Rel. Grav., 52(11):108, 2020.
Nikhil Sarin, Paul D. Lasky, and Gregory Ashton. Gravitational waves or deconfined quarks: what causes the
premature collapse of neutron stars born in short gamma-ray bursts? Phys. Rev. D, 101(6):063021, 2020.
Elias R. Most, L. Jens Papenfort, Veronica Dexheimer, Matthias Hanauske, Stefan Schramm, Horst Sto ̈cker, and Luciano Rezzolla. Signatures of quark-hadron phase transitions in general-relativistic neutron-star mergers. Phys. Rev. Lett., 122(6):061101, 2019.
Andreas Bauswein, Niels-Uwe F. Bastian, David B. Blaschke, Katerina Chatziioannou, James A. Clark, To- bias Fischer, and Micaela Oertel. Identifying a first-order phase transition in neutron star mergers through gravitational waves. Phys. Rev. Lett., 122(6):061102, 2019.
[466] [467] [468] [469]
[470] [471]
[472] [473]
[474]
[475] [476] [477] [478] [479] [480] [481] [482]
[483] [484]
Bibliography
Lukas R. Weih, Matthias Hanauske, and Luciano Rezzolla. Postmerger Gravitational-Wave Signatures of Phase Transitions in Binary Mergers. Phys. Rev. Lett., 124(17):171103, 2020.
Steven L. Liebling, Carlos Palenzuela, and Luis Lehner. Effects of High Density Phase Transitions on Neutron Star Dynamics. Class. Quant. Grav., 38(11):115007, 2021.
Elias R. Most, L. Jens Papenfort, Veronica Dexheimer, Matthias Hanauske, Horst Stoecker, and Luciano Rez- zolla. On the deconfinement phase transition in neutron-star mergers. Eur. Phys. J. A, 56(2):59, 2020.
Sebastian Blacker, Niels-Uwe F. Bastian, Andreas Bauswein, David B. Blaschke, Tobias Fischer, Micaela Oertel, Theodoros Soultanis, and Stefan Typel. Constraining the onset density of the hadron-quark phase transition with gravitational-wave observations. Phys. Rev. D, 102(12):123023, 2020.
Clifford M. Will. The Confrontation between General Relativity and Experiment. Living Rev. Rel., 17:4, 2014. Anthony L. Piro and Christian D. Ott. Supernova Fallback onto Magnetars and Propeller-powered Supernovae.
Astrophys. J., 736(2):108, 2011.
Wataru Ishizaki, Kunihito Ioka, and Kenta Kiuchi. Fallback Accretion Model for the Years-to-decades X-Ray
Counterpart to GW170817. Astrophys. J. Lett., 916(2):L13, 2021.
E. P. J. van den Heuvel and O. Bitzaraki. The magnetic field strength versus orbital period relation for binary radio pulsars with low-mass companions: evidence for neutron-star formation by accretion-induced collapse? Astron. Astrophys., 297:L41, May 1995.
Dhruv Desai, Brian D. Metzger, and Francois Foucart. Imprints of r-process heating on fall-back accretion: dis- tinguishing black hole-neutron star from double neutron star mergers. Mon. Not. Roy. Astron. Soc., 485(3):4404– 4412, 2019.
F. K. Lamb, C. J. Pethick, and D. Pines. A Model for Compact X-Ray Sources: Accretion by Rotating Magnetic Stars. ApJ, 184:271–290, August 1973.
Marek Szczepanczyk et al. Detecting and reconstructing gravitational waves from the next galactic core-collapse supernova in the advanced detector era. Phys. Rev. D, 104(10):102002, 2021.
Madappa Prakash, Ignazio Bombaci, Manju Prakash, Paul J. Ellis, James M. Lattimer, and Roland Knorren. Composition and structure of protoneutron stars. Phys. Rept., 280:1–77, 1997.
K. Glampedakis, N. Andersson, and L. Samuelsson. Magnetohydrodynamics of superfluid and superconducting neutron star cores. Mon. Not. Roy. Astron. Soc., 410:805, 2011.
Masaru Shibata, Keisuke Taniguchi, Hirotada Okawa, and Alessandra Buonanno. Coalescence of binary neutron stars in a scalar-tensor theory of gravity. Phys. Rev. D, 89(8):084005, 2014.
Enrico Barausse, Carlos Palenzuela, Marcelo Ponce, and Luis Lehner. Neutron-star mergers in scalar-tensor theories of gravity. Phys. Rev. D, 87:081506, 2013.
Marcelo Ponce, Carlos Palenzuela, Enrico Barausse, and Luis Lehner. Electromagnetic outflows in a class of scalar-tensor theories: Binary neutron star coalescence. Phys. Rev. D, 91(8):084038, 2015.
Laura Sagunski, Jun Zhang, Matthew C. Johnson, Luis Lehner, Mairi Sakellariadou, Steven L. Liebling, Carlos Palenzuela, and David Neilsen. Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces. Phys. Rev. D, 97(6):064016, 2018.
Shu-Jin Hou, Tong Liu, Ren-Xin Xu, Hui-Jun Mu, Cui-Ying Song, Da-Bin Lin, and Wei-Min Gu. The x-ray light curve in grb 170714a: Evidence for a quark star? Astrophys. J., 854(2):104, 2018.
T. J. Galama, P. M. Vreeswijk, J. van Paradijs, C. Kouveliotou, T. Augusteijn, H. B ̈ohnhardt, J. P. Brewer, V. Doublier, J. F. Gonzalez, B. Leibundgut, C. Lidman, O. R. Hainaut, F. Patat, J. Heise, J. in’t Zand, K. Hurley, P. J. Groot, R. G. Strom, P. A. Mazzali, K. Iwamoto, K. Nomoto, H. Umeda, T. Nakamura, T. R. Young, T. Suzuki, T. Shigeyama, T. Koshut, M. Kippen, C. Robinson, P. de Wildt, R. A. M. J. Wijers, [485]
[486]
[487] [488]
[489]
[490]
[491]
[492]
[493]
[494] [495] [496]
[497]
[498]
[499]
[500]
[501]
[502] [503] [504] [505]
N. Tanvir, J. Greiner, E. Pian, E. Palazzi, F. Frontera, N. Masetti, L. Nicastro, M. Feroci, E. Costa, L. Piro, B. A. Peterson, C. Tinney, B. Boyle, R. Cannon, R. Stathakis, E. Sadler, M. C. Begam, and P. Ianna. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature, 395(6703):670–672, October 1998.
David Reitze et al. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. Bull. Am. Astron. Soc., 51(7):035, 2019.
M. Punturo et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quant. Grav., 27:194002, 2010.
Michele Maggiore et al. Science Case for the Einstein Telescope. JCAP, 03:050, 2020.
S. Hild et al. Sensitivity Studies for Third-Generation Gravitational Wave Observatories. Class. Quant. Grav.,
28:094013, 2011.
I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich, A. Mezzacappa, F. K. Thielemann, and M. Liebendorfer. Signals of the QCD phase transition in core-collapse supernovae. Phys. Rev. Lett., 102:081101, 2009.
Bo Qin, Xiang-Ping Wu, Ming-Chung Chu, and Li-Zhi Fang. The collapse of neutron stars in high mass binaries as the energy source for the gamma-ray bursts. Astrophys. J. Lett., 494:L57, 1998.
Rosalba Perna, Hiromichi Tagawa, Zoltan Haiman, and Imre Bartos. Accretion-Induced Collapse of Neutron Stars in the Disks of Active Galactic Nuclei. Astrophys. J., 915(1):10, 2021.
Dimitrios Psaltis. Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum. Living Rev. Rel., 11:9, 2008.
C. P. Burgess. Quantum gravity in everyday life: General relativity as an effective field theory. Living Rev. Rel., 7:5–56, 2004.
David N. Spergel. The dark side of cosmology: Dark matter and dark energy. Science, 347:1100–1102, 2015. Pascual Jordan. The present state of Dirac’s cosmological hypothesis. Z. Phys., 157:112–121, 1959.
M. Fierz. On the physical interpretation of P.Jordan’s extended theory of gravitation. Helv. Phys. Acta, 29:128–134, 1956.
C. Brans and R. H. Dicke. Mach’s principle and a relativistic theory of gravitation. Phys. Rev., 124:925–935, 1961.
Marcelo Salgado. The Cauchy problem of scalar tensor theories of gravity. Class. Quant. Grav., 23:4719–4742, 2006.
Marcelo Salgado, David Martinez-del Rio, Miguel Alcubierre, and Dario Nunez. Hyperbolicity of scalar-tensor theories of gravity. Phys. Rev. D, 77:104010, 2008.
Takeshi Chiba, Tomohiro Harada, and Ken-ichi Nakao. Gravitational physics in scalar tensor theories: Tests of strong field gravity. Prog. Theor. Phys. Suppl., 128:335–372, 1997.
Y. Fujii and K. Maeda. The scalar-tensor theory of gravitation. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 7 2007.
Valerio Faraoni. Cosmology in scalar tensor gravity. 2004.
Thomas P. Sotiriou. Gravity and Scalar Fields. Lect. Notes Phys., 892:3–24, 2015. I. I. Shapiro. A century of relativity. Rev. Mod. Phys., 71:S41–S53, 1999.
James G. Williams, Slava G. Turyshev, and Dale H. Boggs. Lunar laser ranging tests of the equivalence principle with the earth and moon. Int. J. Mod. Phys. D, 18:1129–1175, 2009.
[506]
[507]
[508]
[509]
[510]
[511]
[512] [513]
[514] [515]
[516] [517] [518]
[519] [520]
[521] [522]
[523] [524]
[525] [526] [527] [528]
Bibliography
S. S. Shapiro, J. L. Davis, D. E. Lebach, and J. S. Gregory. Measurement of the Solar Gravitational Deflection of Radio Waves using Geodetic Very-Long-Baseline Interferometry Data, 1979-1999. Phys. Rev. Lett., 92:121101, 2004.
B. Bertotti, L. Iess, and P. Tortora. A test of general relativity using radio links with the Cassini spacecraft. Nature, 425:374–376, 2003.
Giulia Ventagli, Antoine Leh ́ebel, and Thomas P. Sotiriou. Onset of spontaneous scalarization in generalized scalar-tensor theories. Phys. Rev. D, 102(2):024050, 2020.
Marcelo Salgado, Daniel Sudarsky, and Ulises Nucamendi. On spontaneous scalarization. Phys. Rev. D, 58:124003, 1998.
Norbert Wex. Testing Relativistic Gravity with Radio Pulsars. arXiv e-prints, page arXiv:1402.5594, February 2014.
Soichiro Morisaki and Teruaki Suyama. Spontaneous scalarization with an extremely massive field and heavy neutron stars. Phys. Rev. D, 96(8):084026, 2017.
B. P. Abbott et al. Tests of General Relativity with GW170817. Phys. Rev. Lett., 123(1):011102, 2019.
B. P. Abbott et al. Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog
GWTC-1. Phys. Rev. D, 100(10):104036, 2019.
Nikolas Andreou, Nicola Franchini, Giulia Ventagli, and Thomas P. Sotiriou. Spontaneous scalarization in
generalised scalar-tensor theory. Phys. Rev. D, 99(12):124022, 2019. [Erratum: Phys.Rev.D 101, 109903 (2020)]. Jerome Novak. Neutron star transition to strong scalar field state in tensor scalar gravity. Phys. Rev. D,
58:064019, 1998.
Peter G. Bergmann. Comments on the scalar tensor theory. Int. J. Theor. Phys., 1:25–36, 1968. Robert V. Wagoner. Scalar tensor theory and gravitational waves. Phys. Rev. D, 1:3209–3216, 1970.
Thibault Damour. Binary Systems as Test-beds of Gravity Theories. In 6th SIGRAV Graduate School in Con- temporary Relativity and Gravitational Physics: A Century from Einstein Relativity: Probing Gravity Theories in Binary Systems, 4 2007.
R. H. Dicke. Mach’s principle and invariance under transformation of units. Phys. Rev., 125:2163–2167, 1962. Evan O’Connor and Christian D. Ott. Black Hole Formation in Failing Core-Collapse Supernovae. Astrophys.
J., 730:70, 2011.
Drew Clausen, Anthony L. Piro, and Christian D. Ott. The Black Hole Formation Probability. Astrophys. J.,
799(2):190, 2015.
Tuguldur Sukhbold, T. Ertl, S. E. Woosley, Justin M. Brown, and H. T. Janka. Core-Collapse Supernovae from
9 to 120 Solar Masses Based on Neutrino-powered Explosions. Astrophys. J., 821(1):38, 2016. H. A. Bethe. Supernova mechanisms. Rev. Mod. Phys., 62:801–866, 1990.
AdamBurrows,EliLivne,LucDessart,ChristianOtt,andJeremiahMurphy.Anewmechanismforcore-collapse supernova explosions. Astrophys. J., 640:878–890, 2006.
A. Harada, H. Nagakura, W. Iwakami, and S. Yamada. A Parametric Study of the Acoustic Mechanism for Core-Collapse Supernovae. Astrophys. J., 839(1):28, 2017.
H. Thomas Janka. Conditions for shock revival by neutrino heating in core collapse supernovae. Astron. Astrophys., 368:527, 2001.
Ondrej Pejcha and Todd A. Thompson. The Physics of the Neutrino Mechanism of Core-Collapse Supernovae. Astrophys. J., 746:106, 2012.
Sean M. Couch. The mechanism(s) of core-collapse supernovae. Philosophical Transactions of the Royal Society of London Series A, 375(2105):20160271, September 2017.
[529]
[530]
[531]
[532]
[533] [534]
[535]
[536]
[537]
[538]
[539]
[540]
[541]
[542]
[543]
[544]
[545]
[546]
[547]
[548]
[549]
Jose A. Font, Mark A. Miller, Wai-Mo Suen, and Malcolm Tobias. Three-dimensional numerical general rela- tivistic hydrodynamics. 1. Formulations, methods, and code tests. Phys. Rev. D, 61:044011, 2000.
Jose A. Font. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity. Living Rev. Rel., 11:7, 2008.
S. E. Woosley and Alexander Heger. Nucleosynthesis and Remnants in Massive Stars of Solar Metallicity. Phys. Rept., 442:269–283, 2007.
Zˇeljko Ivezi ́c, Andrew J. Connelly, Jacob T. VanderPlas, and Alexander Gray. Statistics, Data Mining, and Machine Learning in Astronomy. 2014.
Keith Riles. Recent searches for continuous gravitational waves. Mod. Phys. Lett. A, 32(39):1730035, 2017. Harald Dimmelmeier, Christian D. Ott, Hans-Thomas Janka, Andreas Marek, and Ewald Mueller. Generic
Gravitational Wave Signals from the Collapse of Rotating Stellar Cores. Phys. Rev. Lett., 98:251101, 2007. Harald Dimmelmeier, Christian D. Ott, Andreas Marek, and H. Thomas Janka. The Gravitational Wave Burst
Signal from Core Collapse of Rotating Stars. Phys. Rev. D, 78:064056, 2008.
Jose Luis Bla ́zquez-Salcedo, Fech Scen Khoo, and Jutta Kunz. Ultra-long-lived quasi-normal modes of neutron
stars in massive scalar-tensor gravity. EPL, 130(5):50002, 2020.
Jose Luis Bla ́zquez-Salcedo, Fech Scen Khoo, Jutta Kunz, and Vincent Preut. Polar Quasinormal Modes of
Neutron Stars in Massive Scalar-Tensor Theories. Front. in Phys., 9:741427, 2021.
Daniela D. Doneva and Stoytcho S. Yazadjiev. Neutron star solutions with curvature induced scalarization in
the extended Gauss-Bonnet scalar-tensor theories. JCAP, 04:011, 2018.
Alexandru Dima, Enrico Barausse, Nicola Franchini, and Thomas P. Sotiriou. Spin-induced black hole sponta-
neous scalarization. Phys. Rev. Lett., 125(23):231101, 2020.
Daniela D. Doneva, Lucas G. Collodel, Christian J. Kru ̈ger, and Stoytcho S. Yazadjiev. Black hole scalarization
induced by the spin: 2+1 time evolution. Phys. Rev. D, 102(10):104027, 2020.
Pedro V. P. Cunha, Carlos A. R. Herdeiro, and Eugen Radu. Spontaneously Scalarized Kerr Black Holes in
Extended Scalar-Tensor-Gauss-Bonnet Gravity. Phys. Rev. Lett., 123(1):011101, 2019.
Lucas G. Collodel, Burkhard Kleihaus, Jutta Kunz, and Emanuele Berti. Spinning and excited black holes in
Einstein-scalar-Gauss-Bonnet theory. Class. Quant. Grav., 37(7):075018, 2020.
Carlos A. R. Herdeiro, Eugen Radu, Hector O. Silva, Thomas P. Sotiriou, and Nicola ́s Yunes. Spin-induced
scalarized black holes. Phys. Rev. Lett., 126(1):011103, 2021.
Emanuele Berti, Lucas G. Collodel, Burkhard Kleihaus, and Jutta Kunz. Spin-induced black-hole scalarization
in Einstein-scalar-Gauss-Bonnet theory. Phys. Rev. Lett., 126(1):011104, 2021.
Justin L. Ripley and Frans Pretorius. Dynamics of a Z2 symmetric EdGB gravity in spherical symmetry. Class.
Quant. Grav., 37(15):155003, 2020.
Hector O. Silva, Helvi Witek, Matthew Elley, and Nicola ́s Yunes. Dynamical Descalarization in Binary Black
Hole Mergers. Phys. Rev. Lett., 127(3):031101, 2021.
Robert Benkel, Thomas P. Sotiriou, and Helvi Witek. Dynamical scalar hair formation around a Schwarzschild
black hole. Phys. Rev. D, 94(12):121503, 2016.
Justin L. Ripley and Frans Pretorius. Scalarized Black Hole dynamics in Einstein dilaton Gauss-Bonnet Gravity.
Phys. Rev. D, 101(4):044015, 2020.
Daniela D. Doneva, Stella Kiorpelidi, Petya G. Nedkova, Eleftherios Papantonopoulos, and Stoytcho S. Yazad- jiev. Charged Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories. Phys. Rev. D, 98(10):104056, 2018.
[550] [551] [552]
[553] [554] [555] [556]
Justin L. Ripley and Frans Pretorius. Hyperbolicity in Spherical Gravitational Collapse in a Horndeski Theory. Phys. Rev. D, 99(8):084014, 2019.
S. B. Popov and R. Turolla. Initial spin periods of neutron stars in supernova remnants. Astrophys. Space Sci., 341:457–464, 2012.
Aristeidis Noutsos, Dominic Schnitzeler, Evan Keane, Michael Kramer, and Simon Johnston. Pulsar Spin- Velocity Alignment: Kinematic Ages, Birth Periods and Braking Indices. Mon. Not. Roy. Astron. Soc., 430:2281, 2013.
H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi. Relativistic Equation of State for Core-Collapse Supernova Simulations. Astrophys. J. Suppl., 197:20, 2011.
James M. Lattimer and F. Douglas Swesty. A Generalized equation of state for hot, dense matter. Nucl. Phys. A, 535:331–376, 1991.
David Radice, Viktoriya Morozova, Adam Burrows, David Vartanyan, and Hiroki Nagakura. Characterizing the Gravitational Wave Signal from Core-Collapse Supernovae. Astrophys. J. Lett., 876(1):L9, 2019.
[557] Ernazar Abdikamalov, Giulia Pagliaroli, and David Radice. Gravitational Waves from Core-Collapse Super- novae. arXiv e-prints, page arXiv:2010.04356, October 2020.
[558] Carlos Palenzuela, Enrico Barausse, Marcelo Ponce, and Luis Lehner. Dynamical scalarization of neutron stars in scalar-tensor gravity theories. Phys. Rev. D, 89(4):044024, 2014.
Benjamin P Abbott et al. A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals. Class. Quant. Grav., 37(5):055002, 2020.
[559] Nils Andersson. A superfluid perspective on neutron star dynamics. Universe, 7(1):17, 2021.