研究生: |
鄭開騰 Cheng, Kai-Teng |
---|---|
論文名稱: |
摻鉺光纖雷射脈衝形變技術及自適應控制與其應用 Spectral Shaping and Adaptive Control of Er:fiber Lasers and Applications |
指導教授: | 潘犀靈 |
口試委員: |
張存續
趙如蘋 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | freezing phase algorithm 、radio over fiber 、adaptive control 、Gerchberg-Saxton algorithm |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們的光源為1550nm摻鉺光纖脈衝雷射,藉於脈衝形變原理及自適應控制,我們利用凍結相位演算法產生一傅氏轉換極限脈衝。進一步我們也利用Gerchberg-Saxton演算法產生了設計的任意波型。
此外,我們亦將摻鉺光纖脈衝形變技術用於超高速光通訊傳輸系統,我們結合1550nm連續雷射相位調製光頻梳及可調式脈衝形變器,配合光電式W頻帶光纖-無線通訊系統,我們展示了一規模可調並可無縫升級的無線/光纖集成網路。用戶端只需替換一光帶通濾波器即可無縫升級。其有線資料傳輸率達到17.45Gb/s且光纖資料傳輸率達3.36Gb/s。我們亦觀察了在光纖中射頻強度衰減效應。
In this thesis, we first use adaptive freezing phase algorithm to produce a reference transform-limited pulse. The light source is 1550nm mode-locked Er:fiber laser. In addition, we also demonstrated an arbitrary waveform generation by adaptive Gerchberg-Saxton algorithm.
Besides, we also applied spectral shaping technique in high speed optical communication. By combining optical comb generated by phase modulation of continuous wave, programmable shaper and photonics W-band fiber-wireless system, we proposed an easily upgradable and service-integrated access network. The users can easily upgrade their system by changing optical band-pass filter. The wired data rate and wireless data rate can achieve 17.45 Gb/s and 3.36Gb/s respectively after 40 km of single-mode fiber. The radio frequency power fading effect in the fiber also investigated in this experiment.
Reference
[1] T. H. Maiman, "Stimulated Optical Radiation in Ruby," Nature, vol. 187, pp. 493-494, 08/06/print 1960.
[2] M. A. Duguay and J. W. Hansen, "AN ULTRAFAST LIGHT GATE," Applied Physics Letters, vol. 15, pp. 192-194, 1969.
[3] R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, "Compression of optical pulses to six femtoseconds by using cubic phase compensation," Optics Letters, vol. 12, pp. 483-485, 1987/07/01 1987.
[4] J. M. Thorne, T. R. Loree, and G. H. McCall, "Intensity filtration of laser light," Journal of Applied Physics, vol. 45, pp. 3072-3078, 1974.
[5] C. E. Thomas and L. D. Siebert, "Pulse shape generator for laser fusion," Applied Optics, vol. 15, pp. 462-465, 1976/02/01 1976.
[6] J. Desbois, F. Gires, and P. Turnois, "A new approach to picosecond laser pulse analysis shaping and coding," Quantum Electronics, IEEE Journal of, vol. 9, pp. 213-218, 1973.
[7] J. P. Heritage, A. M. Weiner, and R. N. Thurston, "Picosecond pulse shaping by spectral phase and amplitude manipulation," Optics Letters, vol. 10, pp. 609-611, 1985/12/01 1985.
[8] A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," Journal of the Optical Society of America B, vol. 5, pp. 1563-1572, 1988/08/01 1988.
[9] A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable Femtosecond Pulse Shaping by Use of a Multielement Liquid-Crystal Phase Modulator," Optics Letters, vol. 15, pp. 326-328, Mar 15 1990.
[10] C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, "Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses," Optics Letters, vol. 19, pp. 737-739, 1994/05/15 1994.
[11] P. Tournois, "Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems," Optics communications, vol. 140, pp. 245-249, 1997.
[12] R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Physical Review Letters, vol. 68, pp. 1500-1503, 03/09/ 1992.
[13] D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive ultrashort pulse compression and shaping," Optics Communications, vol. 138, pp. 345-348, 6/1/ 1997.
[14] D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Optics Letters, vol. 22, pp. 1793-1795, 1997/12/01 1997.
[15] R. W. Gerchberg, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik, vol. 35, p. 237, 1972 1972.
[16] A. Rundquist, A. Efimov, and D. H. Reitze, "Pulse shaping with the Gerchberg-Saxton algorithm," Journal of the Optical Society of America B, vol. 19, pp. 2468-2478, 2002/10/01 2002.
[17] J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultrafast semiconductor nonlinearities," Applied Physics Letters, vol. 77, pp. 924-926, 2000.
[18] A. M. Weiner, Femtosecond optical pulse shaping and processing. Prog. Quant. Electr., 1995.
[19] M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, "Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train," Optics Express, vol. 20, pp. 1129-1140, 2012/01/16 2012.
[20] Z. Jiang, D. S. Seo, S. D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, et al., "Four-User, 2.5-Gb/s, Spectrally Coded OCDMA System Demonstration Using Low-Power Nonlinear Processing," Journal of Lightwave Technology, vol. 23, p. 143, 2005/01/01 2005.
[21] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2007.
[22] A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Review of Scientific Instruments, vol. 71, pp. 1929-1960, May 2000.
[23] A. M. Weiner, "Programmable Femtosecond Pulse Shaping," in CLEO tutorial talk, 2001, May.
[24] F. G. Omenetto, B. P. Luce, and A. J. Taylor, "Genetic algorithm pulse shaping for optimum femtosecond propagation in optical fibers," Journal of the Optical Society of America B, vol. 16, pp. 2005-2009, 1999/11/01 1999.
[25] A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. I. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," Quantum Electronics, IEEE Journal of, vol. 28, pp. 908-920, 1992.
[26] T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Applied Physics B, vol. 65, pp. 779-782, 1997/12/01 1997.
[27] T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Applied Physics B, vol. 70, pp. S119-S124, 2000/06/01 2000.
[28] M. C. Chen, J. Y. Huang, Q. Yang, C. L. Pan, and J.-I. Chyi, "Freezing phase scheme for fast adaptive control and its application to characterization of femtosecond coherent optical pulses reflected from semiconductor saturable absorber mirrors," Journal of the Optical Society of America B, vol. 22, pp. 1134-1142, 2005/05/01 2005.
[29] Finisar. White Paper: Programmable narrow-band filtering using the WaveShaper 1000S and WaveShaper 4000S [Online].
[30] M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, et al., "Dispersion Trimming in a Reconfigurable Wavelength Selective Switch," Lightwave Technology, Journal of, vol. 26, pp. 73-78, 2008.
[31] G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, et al., "Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Anaheim, California, 2006, p. OTuF2.
[32] T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, "Single Wavelength Channel 10.2 Tb/s TDM-Data Capacity using 16-QAM and coherent detection," in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, Los Angeles, California, 2011, p. PDPA9.
[33] http://www.rp-photonics.com/erbium_doped_gain_media.html. Erbium-doped Gain Media.
[34] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne. (1987, Low-noise erbium-doped fibre amplifier operating at 1.54μm. Electronics Letters 23(19), 1026-1028. Available: http://digital-library.theiet.org/content/journals/10.1049/el_19870719
[35] R. Trebino. Measuring Ultrashort Laser Pulses.
[36] T. Nagatsuma, "Generating Millimeter and Terahertz Waves," Ieee Microwave Magazine, vol. 10, pp. 64-74, Jun 2009.
[37] T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, "Optical pulse compression using high-frequency electrooptic phase modulation," Quantum Electronics, IEEE Journal of, vol. 24, pp. 382-387, 1988.
[38] C.-b. Huang, "Control and Characterization of phase-modulated continuous-wave laser frequency combs," 2008.
[39] J.-W. Shi, C.-B. Huang, and C.-L. Pan, "Millimeter-wave photonic wireless links for very high data rate communication," NPG Asia Materials, vol. 3, pp. 41-48, 2011.
[40] N. S. T. Ishibashi, S. Kodama, H. Ito, T. Nagatsuma, T. Furuta, "Uni-traveling-carrier photodiodes," Tech. Dig. Ultrafast Electron. Optoclcetron., pp. 83-87, 1997.
[41] Y. H. Wu, "High-speed and high-power near-ballistic uni-traveling-carrier photodiode (NBUTC-PD) for the application of W-band radio-over-fiber (ROF) communication system," NCU master thesis, September, 2008.
[42] F. M. Kuo, C. B. Huang, J. W. Shi, C. Nan-Wei, H. P. Chuang, J. E. Bowers, et al., "Remotely Up-Converted 20-Gbit/s Error-Free Wireless On–Off-Keying Data Transmission at W-Band Using an Ultra-Wideband Photonic Transmitter-Mixer," IEEE Photonics Journal, vol. 3, pp. 209-219, 2011.
[43] S. Jin-Wei, J. W. Lin, C. Huang, F. Kuo, C. Nan-Wei, P. Ci-Ling, et al., "Photonic Generation of Few-Cycle Millimeter-Wave Pulse Using a Waveguide-Based Photonic-Transmitter-Mixer," IEEE Photonics Journal, vol. 4, pp. 1071-1079, 2012.
[44] Y. S. Wu, C. Nan-Wei, and J. W. Shi, "A W-Band Photonic Transmitter/Mixer Based on High-Power Near-Ballistic Uni-Traveling-Carrier Photodiode (NBUTC-PD)," Photonics Technology Letters, IEEE, vol. 20, pp. 1799-1801, 2008.
[45] R. Kanthe, "Phase and Frequency Modulation," Master, Lulea University of Technology Department of Mathematics, 2006.
[46] 溫志宏, 劉宗憲, 邱茂清, 林仁宏, and 連振凱, "正交分頻多重進接技術," 2007.
[47] S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, et al., "High performance 'Drop and Continue' Functionality in a Wavelength Selective Switch," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Anaheim, California, 2006, p. PDP14.
[48] C. Pulikkaseril, L. A. Stewart, M. A. F. Roelens, G. W. Baxter, S. Poole, and S. Frisken, "Spectral modeling of channel band shapes in wavelength selective switches," Optics Express, vol. 19, pp. 8458-8470, 2011/04/25 2011.
[49] M. Tani, K.-S. Lee, and X.-C. Zhang, "Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 μm probe," Applied Physics Letters, vol. 77, pp. 1396-1398, 2000.
[50] C.-K. Lee, C.-S. Yang, S.-H. Lin, S.-H. Huang, O. Wada, and C.-L. Pan, "Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas," Optics express, vol. 19, pp. 23689-23697, 2011.
[51] H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, et al., "Next generation 1.5 um terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers," Optics Express, vol. 18, pp. 2296-2301, 2010/02/01 2010.