研究生: |
侯權恩 Hou, Chuan-En |
---|---|
論文名稱: |
液滴接觸角及界面張力之自動化分析系統 Automatic Analysis System for Droplet Contact Angle and Interfacial Tension |
指導教授: |
衛榮漢
Wei, Zung-Hang |
口試委員: |
劉博滔
Liu, Bo-Tau 許文震 Sheu, Wen-Jenn 黃育綸 Huang, Yu-Lun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 接觸角量測系統 、界面張力分析系統 、座滴法 、懸滴法 |
外文關鍵詞: | Contact Angle Measurement System, Interfacial Tension Analysis System, Sessile Drop, Pendant Drop |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要開發液滴之界面張力自動化分析系統。為達精確量測及自動化兩大目標,系統必須在理論基礎、數學模型、馬達程式控制、影像處理等項目上,加以適度地結合,以求機台功能能夠完美呈現。本研究過程簡述如下,液滴界面張力的分析,含座滴法以及懸滴法兩種方法。關於界面張力的計算,本研究有引用其他文獻的理論,將其數學模型加以整理,並嵌入到正在開發的專案中。然而,在實際計算界面張力之前,液滴外框輪廓的偵測是首先要解決的問題。因此影像處理的技術、輪廓偵測、連通分量標記…等方法都被使用上。取得處理好的輪廓之後,才得以套用不同擬合的方法,將接觸角以及界面張力一併計算出來。除了量測的精準度提升之外,機台的自動化也是此次研究的另一項目標。本研究透過程式開發、整合機台的電機電控、並嘗試運用 AI 人工智慧中的深度學習技術,希望將機台自動化提升到更高的層次。例如: 以往液滴是靠人工方式釋放到量測平台上,現今改由程式控制,利用馬達推動針筒釋放液滴,來達成定量滴定的精確度;傾斜量測平台,進行動態接觸角量測的功能也得以被實現;操作介面的流暢度及電腦運算效能,均透過程式的設計有了顯著的改善。
This research mainly focuses on developing an automatic analysis system for the interfacial tension of droplets. In order to achieve both high accuracy and full automation, the system must be properly integrated on the basis of theoretical knowledge, mathematical model, motor control, image processing, etc. in order to achieve better performance. The research can be briefly delivered as follows, the analysis of the interfacial tension includes both sessile drop and pendant drop methods. Regarding the calculation of interfacial tension, this study has referred to theories of other literature and implemented their mathematical models into our project. However, it is necessary to obtain the droplet contour before proceeding to the calculation. Hence, image processing, edge detection, connected-component labeling, etc., have been utilized to obtain the droplet contour, and then, can the contact angle and the interfacial tension be calculated through various kind of contour fitting methods. In addition to the accuracy of the measurement, machine automation is also another major goal of this research. This study develops software, integrates motors and electronic parts, and even tries to use deep learning to enhance the machine automation capacity. For example, a droplet used to be dropped manually onto the measurement plate, but now this work can be done programmatically through syringe pump and the droplet quantity can also be controlled. Moreover, the tilting-plate measurement can also be conducted to measure the dynamic contact angle. The performance of the UI and the computation efficiency have also been improved by using profound programming architectures.
[1] G. Lamour et al., "Contact Angle Measurements Using a Simplified Experimental Setup", Journal of Chemical Education, vol. 87, no. 12, pp. 1403-1407, 2010.
[2] D. Sankowski, K. Strzecha, S. Jezewski, J. Senkara, W. Lobodzinski, "Computerised Device with CCD Camera for Measurement of Surface Tension and Wetting Angle in Solid. Liquid Systems", IMTC'99, May 24–26, 1999.
[3] S. Chini and A. Amirfazli, "A method for measuring contact angle of asymmetric and symmetric drops", Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 388, no. 1-3, pp. 29-37, 2011.
[4] D. Li and A. Neumann, "Contact angles on hydrophobic solid surfaces and their interpretation", Journal of Colloid and Interface Science, vol. 148, no. 1, pp. 190-200, 1992.
[5] T. Young, "An Essay on the Cohesion of Fluids.", Proceedings of the Royal Society of London, vol. 1, no. 0, pp. 171-172, 1800.
[6] A. Neumann, R. Good, C. Hope and M. Sejpal, "An equation-of-state approach to determine surface tensions of low-energy solids from contact angles", Journal of Colloid and Interface Science, vol. 49, no. 2, pp. 291-304, 1974.
[7] D. Li and A. Neumann, "A reformulation of the equation of state for interfacial tensions", Journal of Colloid and Interface Science, vol. 137, no. 1, pp. 304-307, 1990.
[8] F. Hansen and G. Rodsrud, "Surface tension by pendant drop", Journal of Colloid and Interface Science, vol. 141, no. 1, pp. 1-9, 1991.
[9] H. Girault, D. Schiffrin and B. Smith, "Drop image processing for surface and interfacial tension measurements", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 137, no. 2, pp. 207-217, 1982.
[10] S. Fordham, "On the calculation of surface tension from measurements of pendant drops", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 194, no. 1036, pp. 1-16, 1948.
[11] J. Canny, "A Computational Approach to Edge Detection", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. -8, no. 6, pp. 679-698, 1986.
[12] I. Sobel and G. Feldman, "A 3x3 isotropic gradient operator for image processing," presented at the Stanford Artificial Intelligence Project (SAIL), 1968.
[13] Shrivakshan, G.T. & Chandrasekar, Chandramouli, "A Comparison of various Edge Detection Techniques used in Image Processing." International Journal of Computer Science Issues. 9. 269-276, 2012.
[14] Pfaltz, J. "Sequential Operations in Digital Picture Processing." Journal of the ACM, 13(4), pp.471-494, 1966.
[15] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778.
[16] Duchi, John, Hazan, Elad, and Singer, Yoram, "Adaptive subgradient methods for online learning and stochastic optimization." The Journal of Machine Learning Research, 12:2121–2159, 2011.
[17] D. Kingma and J. Ba. "Adam: A method for stochastic optimization." ICLR, 2015.