研究生: |
徐耀東 Yao-Tung Hsu |
---|---|
論文名稱: |
核電廠橡膠電纜劣化與監測技術之研究 Monitoring the Degradation of Ethylene Propylene Rubber Cables Used in Nuclear Power Plants |
指導教授: |
張廖貴術
Kuei-Shu Chang-Liao |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 橡膠電纜劣化 、老化機制 、濕熱劣化 、材料空孔 、監測 、絕緣電阻 、壓痕模數 、散逸因素 |
外文關鍵詞: | EPR cable degradation, Aging mechanism, Moisture-related degradation, Material void, Condition monitoring, Insulation resistance, Indenter modulus, Dissipation factor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於能源價格不斷高漲,美國許多運轉中的核能機組已申請獲准延長其使用年限,以達最佳的經濟效益,而機組延壽最關鍵的就是設備劣化問題。目前核電廠電纜劣化為主要的老化評估項目之ㄧ,而以非破壞方式監測電纜劣化行為,並評估其剩餘壽命為重要課題。本研究藉由橡膠電纜在熱與輻射、長期高溫浸水、LOCA環境模擬等老化環境條件,並輔以絕緣材料水分分析及SEM觀察顯微組織,以探究橡膠電纜劣化現象與監測技術。研究顯示,電纜在熱老化環境,絕緣材料老化至某種程度時,其伸長率會快速下降現象,表示材料抗氧化劑已逐漸用盡;而在濕熱老化環境,絕緣材料內部空孔大小及密度變化,與材料耐水性及電纜電性劣化有密切的關係;另在輻射與LOCA老化環境,因絕緣材料更容易受水分子侵入,導致絕緣電阻特別低。在監測技術方面,乃藉由電性、機械性、化學性及感官檢查等方法,檢測電纜在不同老化環境條件的劣化行為。同時探討合理的允收準則,並應用Arrhenius公式,估算其剩餘壽命。再者,經由電纜壓痕模數、伸長率及耐壓強度三者關係,顯示電纜在不同老化環境,其壽命評估準則也應該有所不同。電纜在熱老化環境時,絕緣材料伸長率降低速度最快,所以適用伸長率作為允收準則,來評估電纜壽命較適合;在濕熱老化環境時,由於絕緣材料耐壓強度低速速度最快,故適用耐壓強度作為允收準則,來評估電纜壽命。最後,本研究發現,對於無法碰觸(inaccessible)橡膠電纜劣化行為,適用非破壞性的絕緣電阻與散逸因素來監測;而對於可碰觸(accessible)橡膠電纜劣化行為,適用壓痕模數來監測,並藉由適當的允收準則,據以評估電纜剩餘壽命。
[1] IEEE Std. 323. Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations. 1974.
[2] IEEE Std. 323. Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations. 1983.
[3] IEEE Std. 383. Standard for Type Test of Class 1E Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations. 1974.
[4] EPRI NP-1558. A Review of Equipment Aging Theory and Technology. Electric Power Research Institute, September 1980.
[5] NUREG/CR-6384 Vol. 1-2. Literature Review of Environmental Qualification of Safety-related Electric cables. U.S. Nuclear Regulatory Commission, April 1996.
[6] R. F. Gazdzinski, W. M. Denny, G. J. Toman, R. T. Butwin. Aging Management Guideline for Commercial Nuclear Power Plants- Electrical Cable and Connections. Sandia National Laboratories, SAND96-0344, September 1996.
[7] R. Lofaro, E. Grove, M. Villaran. Assessment of Environmental Qualification Practices and Condition Monitoring Techniques for Low-voltage Electrical Cables. U.S. Nuclear Regulatory Commission, NUREG/CR-6704 Vol. 2, February 2001.
[8] K. T. Gillen, R. A. Assink and R. Bernstein. Nuclear Energy Plant Optimization (NEPO) Final Report on Aging and Condition monitoring of Low-Voltage Cable Materials. Sandia National Laboratories Report SAND2005-7331, November, 2005.
[9] NEA/CSNI/R(2004)12. Research Efforts Related to Wire System Aging in NEA Member Countries. Nuclear Energy Agency, 2004.
[10] NSTC WSSIWG. Review of Federal Programs for Wire System Safety. National Science and Technology Council, Wire System Safety Interagency Working Group. Final Report, November 2000.
[11] IAEA-TECDOC-1188. Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: In-containment Instrumentation and Control Cables. Vol. 1, December 2000.
[12] EPRI TR-103834-P1-2. Effects of Moisture on the Life of Power Plant Cables. Final Report, 1994.
[13] NEI 06-05. Medium-voltage Underground Cable White paper. Nuclear Energy Institute, April 2006.
[14] NRC GL 2007-01. Inaccessible or Underground Power Cable Failures That Disable Accident Mitigation Systems or Cause Plant Transients. U.S. Nuclear Regulatory Commission, February 2007.
[15] 鍾田貴,「核電廠電纜老化非破壞性檢測的研究」,國立清華大學,碩士論文,2000。
[16] Reg. Guide 1.89, Rev. 1, Environmental Qualification of Certain Electrical Equipment Important to Safety for Nuclear Power Plants. U.S. Nuclear Regulatory Commission, 1984.
[17] IEEE Std. 1205. IEEE Guide for Assessing, Monitoring, and Mitigating Aging Effects on Class 1E Equipment Used in Nuclear Power Generating Stations. March 2000.
[18] David A. Horvath, R. Paul Colaianni. Updated Aging Assessment Approach and Use with Electric Cable Insulation. January 2003.
[19] M. Davis, M. Evans. Radiation Effects on Organic Materials in Nuclear Power Plants. Electric Power Plant Institute, EPRI NP-2129, November 1981.
[20] F. Bouquet, J. Winslow. Radiation Data for Design and Qualification of Nuclear Plant Equipment. Electric Power Plant Institute, EPRI NP-4172-M and NP-4172-SP, August 1985.
[21] NUREG/CR-4301. Status Report on Equipment Qualification Issues Research and Resolution. Sandia National Laboratories, November 1986.
[22] M. T. Shaw. Natural Versus Artificial Aging of Nuclear Power Plant Components. Electric Power Plant Institute, EPRI NP-4997, December 1986.
[23] M. T. Shaw. Natural Versus Artificial Aging of Electrical Components. Electric Power Plant Institute, EPRI TR-106845, March 1997.
[24] P. Holzman, G. Sliter. Equipment Qualification Reference Manual. Electric Power Plant Institute, EPRI TR-100516, 1992.
[25] R. L. Clough, K. T. Gillen. Investigation of Cable Deterioration Inside Reactor Containment. Nuclear Technology, Vol. 59, November 1982; p. 344.
[26] SAND88-0754 UC-78. Time-Temperature-Dose Rate Superposition: A Methodology for Predicting Cable Degradation Under Ambient Nuclear Power Plant Aging Conditions. Sandia National Laboratories, August 1988.
[27] NUREG/CR-0275. An Experimental Investigation of Synergisms in Class 1 Components Subjected to LOCA Type Tests. Sandia National Laboratories, August 1978.
[28] SAND90-2009 UC-523. Predictive Aging Results for Cable Materials in Nuclear Power Plants. Sandia National Laboratories, November 1990.
[29] SAND91-0822 UC-523. Aging Predictions in Nuclear Power Plants – Crosslinked Polyolefin and EPR Cable Insulation Materials. Sandia National Laboratories, June 1991.
[30] K. Anandakumaran, W. Seidl, P.V. Castaldo. Condition Assessment of Cable Insulation System in Operating Nuclear Power Plants. IEEE Transactions on Dielectrics and Electrical Insulation, Vol 6 No. 3, June 1999; 376-384.
[31] Yangyang Sun, Shijian Luo, Ken Watkins, C.P. Wong. Electrical Approach to Monitor the Thermal Oxidation Aging of Carbon Black Filled Ethylene Propylene Rubber. Polymer Degradation and Stability 2004; 209-215.
[32] EPRI TR-106108. Diagnostic Matrix for Evaluation of Low-voltage Electrical Cables. November 1997.
[33] S.V. Nikolajevic. The Behaviour of Water in XLPE and EPR Cables and Its Influence on the Electric Characteristics of Insulation. IEEE Transactions on Power Delivery, Vol. 14, No. 1, January 1999; 39-45.
[34] K. S. Chang-Liao, T. K. Chung, H. P. Chou. Cable Aging Assessment by Electrical Capacitance Measuring Technique. International Topical meeting on nuclear plant instrumentation, control, and human-machine interface technologies (NPIC&HMIT), Washington, DC, November 2000.
[35] Steven M. Avila and David A. Horvath. Microscopic Void Detection as a Prelude to Predicting Remaining Life in Electric Cable Insulation. International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-machine Interface Technologies (NPIC&HMIT), Washington, DC, November 2000.
[36] IEC 61244-3. Long-term Radiation Ageing in Polymers- Part 3: Procedures for In-service Monitoring of Low-voltage Cable Materials. International Electrotechnical Commission, 2005.
[37] M.J. Sandelin, U.W. Gedde. Long-term Performance of Cables Based on Chlorosulphonated Polyethylene. Polymer Degradation and Stability 2004; Vol.86, 331-338
[38] EPRI 1001391. Training Aids for Visual/tactile Inspection of Electrical Cables for Detection of Aging. March 2002.
[39] EPRI NP-7348. Cable Indenter Aging Monitor. Final Report, June 1991.
[40] EPRI NP-5920. Cable Indenter Aging Monitor. Interim Report, July 1988.
[41] ASTM D412. Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-tension. 1993.
[42] K. T. Gillen, R. Bernstein, R. L. Clough and M. Celina. Lifetime Predictions for Semi-crystalline Materials. I. Mechanical Properties and Oxygen Consumption Measurements on EPR Materials. Polymer Degradation and Stability 2006; Vol. 91, 2146-2156.
[43] ASTM D2240. Standard Test Method for Rubber Property-Durometer Hardness. August 2005.
[44] J. Novak, R. Bartnikas, Ionization and Excitation Behavior in a Microcavity. IEEE Transactions Dielectrics Electrical Insulation, Vol. 2, 1995;724-728.
[45] R. Bartnikas, K. D. Srivastava, Power and Communication Cables: Theory and Applications. The Institute of Electrical and Electronics Engineers, 1999.
[46] Y.T. Hsu, K.S. Chang-Liao, T.K. Wang, C.T. Kuo. Monitoring the Moisture-related Degradation of Ethylene Propylene Rubber Cable by Electrical and SEM Methods. Polymer Degradation and Stability 2006; 2357-2364.
[47] Gillen, K.T., Clough, R.L. Rigorous Experimental Confirmation of a Theoretical Model for Diffusion-limited Oxidation. Polymer Vol.33, 1992; 4358-4365.
[48] Gillen, K.T., Celina, M., Clough, R.L. Density Measurements as a Condition Monitoring Approach for Following the Aging of Nuclear Power Plant Cable Materials. Radiation Physics and Chemistry 1999; 429-447.