簡易檢索 / 詳目顯示

研究生: 徐耀東
Yao-Tung Hsu
論文名稱: 核電廠橡膠電纜劣化與監測技術之研究
Monitoring the Degradation of Ethylene Propylene Rubber Cables Used in Nuclear Power Plants
指導教授: 張廖貴術
Kuei-Shu Chang-Liao
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 75
中文關鍵詞: 橡膠電纜劣化老化機制濕熱劣化材料空孔監測絕緣電阻壓痕模數散逸因素
外文關鍵詞: EPR cable degradation, Aging mechanism, Moisture-related degradation, Material void, Condition monitoring, Insulation resistance, Indenter modulus, Dissipation factor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於能源價格不斷高漲,美國許多運轉中的核能機組已申請獲准延長其使用年限,以達最佳的經濟效益,而機組延壽最關鍵的就是設備劣化問題。目前核電廠電纜劣化為主要的老化評估項目之ㄧ,而以非破壞方式監測電纜劣化行為,並評估其剩餘壽命為重要課題。本研究藉由橡膠電纜在熱與輻射、長期高溫浸水、LOCA環境模擬等老化環境條件,並輔以絕緣材料水分分析及SEM觀察顯微組織,以探究橡膠電纜劣化現象與監測技術。研究顯示,電纜在熱老化環境,絕緣材料老化至某種程度時,其伸長率會快速下降現象,表示材料抗氧化劑已逐漸用盡;而在濕熱老化環境,絕緣材料內部空孔大小及密度變化,與材料耐水性及電纜電性劣化有密切的關係;另在輻射與LOCA老化環境,因絕緣材料更容易受水分子侵入,導致絕緣電阻特別低。在監測技術方面,乃藉由電性、機械性、化學性及感官檢查等方法,檢測電纜在不同老化環境條件的劣化行為。同時探討合理的允收準則,並應用Arrhenius公式,估算其剩餘壽命。再者,經由電纜壓痕模數、伸長率及耐壓強度三者關係,顯示電纜在不同老化環境,其壽命評估準則也應該有所不同。電纜在熱老化環境時,絕緣材料伸長率降低速度最快,所以適用伸長率作為允收準則,來評估電纜壽命較適合;在濕熱老化環境時,由於絕緣材料耐壓強度低速速度最快,故適用耐壓強度作為允收準則,來評估電纜壽命。最後,本研究發現,對於無法碰觸(inaccessible)橡膠電纜劣化行為,適用非破壞性的絕緣電阻與散逸因素來監測;而對於可碰觸(accessible)橡膠電纜劣化行為,適用壓痕模數來監測,並藉由適當的允收準則,據以評估電纜剩餘壽命。


    摘要................... I 致謝................... II 目錄................... III 圖目錄................... VI 表目錄................... IX 第一章 緒論................... 1 1.1 研究動機與目的................... 1 1.2 研究範圍................... 2 1.3 研究概要................... 2 第二章 文獻回顧................... 4 2.1 前言................... 4 2.2 電纜種類................... 5 2.3 老化機制與影響................... 6 2.4 老化評估模型................... 7 2.5 允收準則................... 8 2.6 監測方法................... 9 2.7 結論................... 11 第三章 實驗與量測方法................... 12 3.1 材料................... 12 3.2 老化實驗................... 12 3.3 量測................... 13 3.4 結論................... 15 第四章 橡膠電纜材料特性評估................... 21 4.1 熱老化環境................... 21 4.2 濕熱老化環境................... 23 4.3 熱與輻射老化環境................... 24 4.4 LOCA模擬老化環境................... 25 4.5 機械特性與電氣特性之關聯性................... 25 4.6 自然老化與人工加速老化電纜................... 26 4.7 結論................... 27 第五章 橡膠電纜老化監測................... 47 5.1 電性監測................... 47 5.2 機械性監測................... 50 5.3 化學性監測................... 52 5.4 感官檢查................... 52 5.5 允收準則與剩餘壽命估算................... 53 5.6 結論................... 55 第六章 結論與建議................... 68 6.1 結論................... 68 6.2 建議................... 70 參考文獻................... 71

    [1] IEEE Std. 323. Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations. 1974.
    [2] IEEE Std. 323. Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations. 1983.
    [3] IEEE Std. 383. Standard for Type Test of Class 1E Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations. 1974.
    [4] EPRI NP-1558. A Review of Equipment Aging Theory and Technology. Electric Power Research Institute, September 1980.
    [5] NUREG/CR-6384 Vol. 1-2. Literature Review of Environmental Qualification of Safety-related Electric cables. U.S. Nuclear Regulatory Commission, April 1996.
    [6] R. F. Gazdzinski, W. M. Denny, G. J. Toman, R. T. Butwin. Aging Management Guideline for Commercial Nuclear Power Plants- Electrical Cable and Connections. Sandia National Laboratories, SAND96-0344, September 1996.
    [7] R. Lofaro, E. Grove, M. Villaran. Assessment of Environmental Qualification Practices and Condition Monitoring Techniques for Low-voltage Electrical Cables. U.S. Nuclear Regulatory Commission, NUREG/CR-6704 Vol. 2, February 2001.
    [8] K. T. Gillen, R. A. Assink and R. Bernstein. Nuclear Energy Plant Optimization (NEPO) Final Report on Aging and Condition monitoring of Low-Voltage Cable Materials. Sandia National Laboratories Report SAND2005-7331, November, 2005.
    [9] NEA/CSNI/R(2004)12. Research Efforts Related to Wire System Aging in NEA Member Countries. Nuclear Energy Agency, 2004.
    [10] NSTC WSSIWG. Review of Federal Programs for Wire System Safety. National Science and Technology Council, Wire System Safety Interagency Working Group. Final Report, November 2000.
    [11] IAEA-TECDOC-1188. Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: In-containment Instrumentation and Control Cables. Vol. 1, December 2000.
    [12] EPRI TR-103834-P1-2. Effects of Moisture on the Life of Power Plant Cables. Final Report, 1994.
    [13] NEI 06-05. Medium-voltage Underground Cable White paper. Nuclear Energy Institute, April 2006.
    [14] NRC GL 2007-01. Inaccessible or Underground Power Cable Failures That Disable Accident Mitigation Systems or Cause Plant Transients. U.S. Nuclear Regulatory Commission, February 2007.
    [15] 鍾田貴,「核電廠電纜老化非破壞性檢測的研究」,國立清華大學,碩士論文,2000。
    [16] Reg. Guide 1.89, Rev. 1, Environmental Qualification of Certain Electrical Equipment Important to Safety for Nuclear Power Plants. U.S. Nuclear Regulatory Commission, 1984.
    [17] IEEE Std. 1205. IEEE Guide for Assessing, Monitoring, and Mitigating Aging Effects on Class 1E Equipment Used in Nuclear Power Generating Stations. March 2000.
    [18] David A. Horvath, R. Paul Colaianni. Updated Aging Assessment Approach and Use with Electric Cable Insulation. January 2003.
    [19] M. Davis, M. Evans. Radiation Effects on Organic Materials in Nuclear Power Plants. Electric Power Plant Institute, EPRI NP-2129, November 1981.
    [20] F. Bouquet, J. Winslow. Radiation Data for Design and Qualification of Nuclear Plant Equipment. Electric Power Plant Institute, EPRI NP-4172-M and NP-4172-SP, August 1985.
    [21] NUREG/CR-4301. Status Report on Equipment Qualification Issues Research and Resolution. Sandia National Laboratories, November 1986.
    [22] M. T. Shaw. Natural Versus Artificial Aging of Nuclear Power Plant Components. Electric Power Plant Institute, EPRI NP-4997, December 1986.
    [23] M. T. Shaw. Natural Versus Artificial Aging of Electrical Components. Electric Power Plant Institute, EPRI TR-106845, March 1997.
    [24] P. Holzman, G. Sliter. Equipment Qualification Reference Manual. Electric Power Plant Institute, EPRI TR-100516, 1992.
    [25] R. L. Clough, K. T. Gillen. Investigation of Cable Deterioration Inside Reactor Containment. Nuclear Technology, Vol. 59, November 1982; p. 344.
    [26] SAND88-0754 UC-78. Time-Temperature-Dose Rate Superposition: A Methodology for Predicting Cable Degradation Under Ambient Nuclear Power Plant Aging Conditions. Sandia National Laboratories, August 1988.
    [27] NUREG/CR-0275. An Experimental Investigation of Synergisms in Class 1 Components Subjected to LOCA Type Tests. Sandia National Laboratories, August 1978.
    [28] SAND90-2009 UC-523. Predictive Aging Results for Cable Materials in Nuclear Power Plants. Sandia National Laboratories, November 1990.
    [29] SAND91-0822 UC-523. Aging Predictions in Nuclear Power Plants – Crosslinked Polyolefin and EPR Cable Insulation Materials. Sandia National Laboratories, June 1991.
    [30] K. Anandakumaran, W. Seidl, P.V. Castaldo. Condition Assessment of Cable Insulation System in Operating Nuclear Power Plants. IEEE Transactions on Dielectrics and Electrical Insulation, Vol 6 No. 3, June 1999; 376-384.
    [31] Yangyang Sun, Shijian Luo, Ken Watkins, C.P. Wong. Electrical Approach to Monitor the Thermal Oxidation Aging of Carbon Black Filled Ethylene Propylene Rubber. Polymer Degradation and Stability 2004; 209-215.
    [32] EPRI TR-106108. Diagnostic Matrix for Evaluation of Low-voltage Electrical Cables. November 1997.
    [33] S.V. Nikolajevic. The Behaviour of Water in XLPE and EPR Cables and Its Influence on the Electric Characteristics of Insulation. IEEE Transactions on Power Delivery, Vol. 14, No. 1, January 1999; 39-45.
    [34] K. S. Chang-Liao, T. K. Chung, H. P. Chou. Cable Aging Assessment by Electrical Capacitance Measuring Technique. International Topical meeting on nuclear plant instrumentation, control, and human-machine interface technologies (NPIC&HMIT), Washington, DC, November 2000.
    [35] Steven M. Avila and David A. Horvath. Microscopic Void Detection as a Prelude to Predicting Remaining Life in Electric Cable Insulation. International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-machine Interface Technologies (NPIC&HMIT), Washington, DC, November 2000.
    [36] IEC 61244-3. Long-term Radiation Ageing in Polymers- Part 3: Procedures for In-service Monitoring of Low-voltage Cable Materials. International Electrotechnical Commission, 2005.
    [37] M.J. Sandelin, U.W. Gedde. Long-term Performance of Cables Based on Chlorosulphonated Polyethylene. Polymer Degradation and Stability 2004; Vol.86, 331-338
    [38] EPRI 1001391. Training Aids for Visual/tactile Inspection of Electrical Cables for Detection of Aging. March 2002.
    [39] EPRI NP-7348. Cable Indenter Aging Monitor. Final Report, June 1991.
    [40] EPRI NP-5920. Cable Indenter Aging Monitor. Interim Report, July 1988.
    [41] ASTM D412. Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-tension. 1993.
    [42] K. T. Gillen, R. Bernstein, R. L. Clough and M. Celina. Lifetime Predictions for Semi-crystalline Materials. I. Mechanical Properties and Oxygen Consumption Measurements on EPR Materials. Polymer Degradation and Stability 2006; Vol. 91, 2146-2156.
    [43] ASTM D2240. Standard Test Method for Rubber Property-Durometer Hardness. August 2005.
    [44] J. Novak, R. Bartnikas, Ionization and Excitation Behavior in a Microcavity. IEEE Transactions Dielectrics Electrical Insulation, Vol. 2, 1995;724-728.
    [45] R. Bartnikas, K. D. Srivastava, Power and Communication Cables: Theory and Applications. The Institute of Electrical and Electronics Engineers, 1999.
    [46] Y.T. Hsu, K.S. Chang-Liao, T.K. Wang, C.T. Kuo. Monitoring the Moisture-related Degradation of Ethylene Propylene Rubber Cable by Electrical and SEM Methods. Polymer Degradation and Stability 2006; 2357-2364.
    [47] Gillen, K.T., Clough, R.L. Rigorous Experimental Confirmation of a Theoretical Model for Diffusion-limited Oxidation. Polymer Vol.33, 1992; 4358-4365.
    [48] Gillen, K.T., Celina, M., Clough, R.L. Density Measurements as a Condition Monitoring Approach for Following the Aging of Nuclear Power Plant Cable Materials. Radiation Physics and Chemistry 1999; 429-447.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE