研究生: |
王權明 |
---|---|
論文名稱: |
使用單一觀測值監控製程平均數和標準變異 Monitoring the process mean and standard deviation using individual observations |
指導教授: | 黃榮臣 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 指數加權移動平均管制圖 、單一觀測值 、製程變異數與標準變異 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
為了迎合消費者需求以提升產品競爭力,許多科技產品越來越精密,其製造所需的時間以及成本也越來越高。因此,基於成本及其他因素的考量,監控製程的抽樣有時只能得到一個觀測值,此時產生了自由度不足以直接估計製程變異數的問題。本文主要是探討在資料服從常態分配的假設下,如何利用單一觀測值來對製程進行監控。Reynolds和Stoumbos (2001)比較了各種單一觀測值管制圖的組合表現,得到了最好監控效果組合的結論。我們將Shu與Jiang (2008)提出的監控製程變異數的方法,推廣到合理子群僅有一個觀測值的情況,並且另外提出幾個方法與上述二個方法進行比較。比較後發現,我們所提出的一種管制圖在監控製程變異數變大時有較好的表現,而另一種管制圖在監控製程變異數變小時有較好的表現,在同時監控製程平均數以及變異數偏移上,我們所提出的合併管制圖對整體的製程監控有相當不錯的表現。另外,我們也探討了所提出的合併管制圖對於估計改變點的準確度,並且利用估計得到的改變點將資料分群,進行可歸屬參數偏移的診斷。
[1] Acosta-Mejia, C. A. and Pignatiello, J. J., Jr. (2000). Monitoring Process Dispersion Without Subgrouping. Journal of Quality Technology 32, pp. 89-101.
[2] Barr, D. R. and Sherrill, E. T. (1999). Mean and Variance of Truncated Normal Distributions. The American Statistician 53, pp. 357-361.
[3] Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems: Effect on Inequality of Variance in One-Way Classification. Annals of Mathematic Statistics 25, pp. 290-302.
[4] Chen, G. M. Cheng, S. W., and Xie, H. S. (2001). Monitoring Process Mean and Variability with One EWMA Chart. Journal of Quality Technology 33, pp. 223 -233.
[5] Crowders, S. V. and Hamilton, M. (1992). Average Run Lengths of EWMA Controls for Monitoring a Process Standard Deviation. Journal of Quality Technology 24, pp. 44-50.
[6] Domangue, R. and Patch, S. (1991). Some Omnibus Exponentially Weighted Moving Average Statistical Process Monitoring Schemes. Technometrics 33, pp. 299-313.
[7] Chen, G., Cheng, S. W., and Xie, H. (2001). Monitoring Process Mean and Variability with One EWMA Chart. Journal of Quality Technology 33, pp. 223-233.
[8] Hawkins, D. M., Qiu, P., and Kang, C. W. (2003). The Changepoint Model for Statistical Process Control. Journal of Quality Technology 35, pp.355-366.
[9] Hawkins, D. M. and Zamba, K. D. (2005). Statistical Process Control for Shifts in Mean or Variance Using a Change-Point Formulation. Technometrics 47, pp. 164-173.
[10] Huwang, L. and Wang, Y. T. and Chen, Z. J. (2009). On the Exponentially Weighted Moving Variance. To appear in Naval Research Logistics.
[11] Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. 2nd., John Wiley & Sons, New York, NY.
[12] MacGregor, J. F. and Harris, T. F. (1993). The Exponentially Weighted Moving Variance. Journal of Quality Technology 25, pp. 106-118.
[13] Montgomery, D. C. (2005). Introduction to Statistical Quality Control. 5th ed., John Wiley & Sons, New York, NY.
[14] Page, E. S. (1954). Continuous Inspection Schemes. Biometrics 41, pp. 100-114.
[15] Quesenberry, C. P. (1995). Geometric Q Charts for High Quality Processes. Journal of Quality Technology 27, pp. 304-315.
[16] Robert, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics 1, pp. 239-250.
[17] Reynolds, M. R. and Stoumbos, Z. G. (2001). Monitoring the Process Mean and Variance Using Individual Observations and Variable Sampling Intervals. Journal of Quality Technology 33, pp. 181-205.
[18] Shu, L. and Jiang, W. (2008). A New EWMA Chart for Monitoring Process Dispersion. Journal of Quality Technology 40, pp. 319-331.
[19] Sullivan J. H. and Woodall W. H. (1996). A Control Chart for Preliminary Analysis of Individual Observations. Journal of Quality Technology 28, pp. 265-278.
[20] Shewhart, W. A. (1924). Some Applications of Statistical Methods to the Analysis of Physical and Engineering Data. Bell System Technical Journal III, pp. 43-87.
[21] Turner, C. D., Jr., Sullivan, J. H., and Woodall, W. H. (2001). A Program for Retrospective Change-Point Analysis of Individual Observations. Journal of Quality Technology 33, pp. 242-257.
[22] Vargas, J. A. (2003). Robust Estimation in Multivariate Control Charts for Individual Observations. Journal of Quality Technology 35, pp. 367-376.