研究生: |
孫健智 Sun, Jian-Jhih |
---|---|
論文名稱: |
應用於矽基微型顯示器之具備脈衝寬度調變功能之驅動電路 A Compact PWM Function Driver for Silicon-Based Micro LED Display |
指導教授: |
盧志文
Lu, Chih-Wen |
口試委員: |
陳宏偉
Chen, Hung-Wei 黃彥中 Huang, Yen-Chung |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 微型發光二極體顯示器 、矽基微型發光二極體驅動器 、脈衝寬度調變 、高解析度 、虛擬實境 |
外文關鍵詞: | Micro LED Display, Silicon-based Micro LED Driver, PWM, high-resolution, VR |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微發光二極體(Micro LED)為目前新一代的顯示器,與現有TFT-LCD和OLED技術相比,Micro LED顯示器可以提供卓越的影像品質和省電效能。其應用範圍小至1吋以下、大至100吋以上,而針對不同的應用如擴增實境(AR)、虛擬實境(VR)至大型智慧看板等,若使用適合的製程技術,即可讓產品發揮更多元化的功能。而在小尺寸應用上,主要導入AR及VR產品,其皆屬於頭戴式裝置,故使用時需要離眼睛距離相當近,除了反應速度要求快以外,其最佳畫素量需求為2000ppi以上,正好為Micro LED的優勢。
此篇論文即是應用於高解析度之矽基Micro LED面板驅動電路,其面板採用CMOS的優勢包括元件性能、高整合度以及Micro LED直接堆疊在電路上的短距離連接,使得Micro LED 與電子元件所佔據的表面積最小化。由於Micro LED顯示器需要高效率來提供更明亮的影像,還需要更快的速度以支援不斷提升的高解析度需求,因此驅動電路的設計上必須在固定的畫面更新時間內,啟動數十萬甚至百萬的畫素進行供電。此論文為實現一微型顯示器驅動電路,其具備1280 × 720解析度與每秒90畫面之Silicon-based Micro LED driver。於此論文中採用TSMC 0.18µm製程與6.4µm寬度之畫素設計來達到近4000 PPI之高解析度,並採用PWM調變方式達成10-bit灰階亮度。
Micro light-emitting diode (Micro LED) is the next generation of display. Compared with existing TFT-LCD and OLED technologies, Micro LED displays can provide superior image quality and power saving performance. Its application range is as small as 1 inch or less and as large as 100 inches or more. For different applications, such as augmented reality (AR), virtual reality (VR), and large smart signage, etc., if the appropriate process technology is used, the product can play more diverse functions. For small-size applications, AR and VR products are mainly introduced, which are all head-mounted devices. Therefore, it needs to be quite close to the eyes when using it. In addition to the fast response speed, its optimal pixel quantity requirement is more than 2000ppi, which is exactly the advantage of Micro LED.
This thesis is a high-resolution silicon-based Micro LED panel driver circuit. The advantages of using CMOS on its panel include component performance, high integration, and short-distance connection of Micro LED directly stacked on the circuit, which minimizes the surface area occupied by Micro LED and electronic components. Because Micro LED displays require high efficiency to provide brighter images, they also need faster speeds to support the increasing demand for high resolution. Therefore, the design of the driving circuit must start hundreds of thousands or even millions of pixels to supply power within a fixed screen update time. This thesis is to realize a Micro LED display driver circuit, which has a silicon-based Micro LED driver with 1280 × 720 resolution and 90 frames per second. In this thesis, the pixel design of TSMC 0.18µm process and 6.4µm pitch is used to achieve a high resolution of nearly 4000 PPI, and PWM method is used to achieve 10-bit gray level.
[1]A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1477–1486, Sep. 2004.
[2]D.-U. Jin et al., “World-largest (6.5”) flexible full color top emission AMOLED display on plastic film and its bending properties,” in SID Symp. Dig. Tech. Papers, 2012, pp. 983–985.
[3]N. Komiya, C. Oh, K. Eom, Y. Kim, S. Park, and S. Kim, “A 2.0-in. AMOLED panel with voltage programming pixel circuits and point scanning data driver circuits,” in Proc. Int. Disp. Workshops (IDW’04), 2004, pp. 283–286.
[4]H.-J. In and O.-K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron. Device Lett., vol. 30, no. 4, pp. 377–379, Apr. 2009.
[5]M. Ohta, H. Tsutsu, H. Takahara, I. Kobayashi, T. Uemura, and Y. Takubo, “A novel current programmed pixel for active matrix OLED displays,” in SID Symp. Dig. Tech. Papers, 2003, pp. 108–111.
[6]J. H. Baek et al., “A current-mode display driver IC using sample-andhold scheme for QVGA full-color AMOLED displays,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2974–2982, Dec. 2006.
[7]Chih-Lung Lin, Member, IEEE, Po-Syun Chen, Mao-Hsun Cheng, Yen-Ting Liu, and Fu-Hsing Chen, “A Three-Transistor Pixel Circuit to Compensate for Threshold Voltage Variations of LTPS TFTs for AMOLED Displays, ” JOURNAL OF DISPLAY TECHNOLOGY, VOL. 11, NO. 2, pp. 146-148, FEBRUARY 2015.
[8]Cuicui Wang, Chuanli Leng, Longyan Wang, Wengao Lu, and Shengdong Zhang, “An Accurate and Fast Current-Biased Voltage-Programmed AMOLED Pixel Circuit With OLED Biased in AC Mode, ” JOURNAL OF DISPLAY TECHNOLOGY, VOL. 11, NO. 7, pp. 615-619, JULY 2015.
[9]Chih-Lung Lin, Fu-Hsing Chen, Chia-Che Hung, Po-Syun Chen, Ming-Yang Deng, Chun-Ming Lu, and Tzuen-Hsi Huang, “New a-IGZO Pixel Circuit Composed of Three Transistors and One Capacitor for Use in High-Speed-Scan AMOLED Displays, ” JOURNAL OF DISPLAY TECHNOLOGY, VOL. 11, NO. 12, pp. 1031 - 1034, DECEMBER 2015.
[10]Ching-Lin Fan, Yi-Chiung Chen, Chuang-Cheng Yang, Yung-Kun Tsai, and Bohr-Ran Huang, “Novel LTPS-TFT Pixel Circuit with OLED Luminance Compensation for 3D AMOLED Displays, ” JOURNAL OF DISPLAY TECHNOLOGY, VOL. 12, NO. 5, pp. 425 - 428, MAY 2016.
[11]J.-S. Bang, H.-S. Kim, S.-H. Park, G.-H. Kim, and G.-H. Cho, “A real-time TFT compensation through power line current sensing for high resolution AMOLED displays,” in SID Symp. Dig. Tech. Papers, 2014, pp. 724–727.
[12]J.-S. Bang et al., “Hybrid driver IC for real-time TFT non-uniformity compensation of ultra high-definition AMOLED display,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2015, pp. 326–327.
[13]Jun-Suk Bang, Hyun-Sik Kim, Ki-Duk Kim, Oh-Jo Kwon, Choong-Sun Shin, Joohyung Lee, and Gyu-Hyeong Cho, “A Hybrid AMOLED Driver IC for Real-Time TFT Nonuniformity Compensation,” IEEE J. Solid-State Circuits, vol. 51, no. 4, pp. 966–978, Sep. 2016.
[14]J. Sanford and E. Schlig, “Direct view active matrix VGA OLED-on-crystalline-silicon,” in Soc. Information Display Dig., 2001, pp. 376–379.
[15]W. Howard and O. Prache, “Microdisplays based upon OLED,” IBM J. Res. Develop., vol. 45, Jan. 2002.
[16]Gary B. Levy, William Evans, John Ebner, Patrick Farrell, Mike Hufford, Bryan H. Allison, David Wheeler, Haiqing Lin, Olivier Prache, and Eric Naviasky, “An 852 600 Pixel OLED-on-Silicon Color Microdisplay Using CMOS Subthreshold-Voltage-Scaling Current Drivers, ” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1879–1889, Sep. 2002.
[17]彰化師大藍光實驗室OLED網, URL:http://ykuo.ncue.edu.tw/oled/index.htm.
[18]StockFeel股感, “Micro LED是什麼?微發光二極體的構造”, URL: https://www.stockfeel.com.tw/.
[19]Yong-Joon Jeon, Student Member, IEEE, Jin-Yong Jeon, Student Member, IEEE, Young-Suk Son, Jin Huh, and Gyu-Hyeong Cho, Member, IEEE, “A High-Speed Current-Mode Data Driver With Push-Pull Transient Current Feedforward for Full-HD AMOLED Displays ” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 9, SEPTEMBER 2010.
[20]J. Sanford, and F. Libsch, “TFT AMOLED pixel circuits and driving methods,” Dig. of Tech. Papers, SID Int. Symp., San Jose, pp. 10-13, 2003.
[21]Y.He, R.Hattori, and J. Kanicki, “Improved a-Si:H TFT circuits for active-matrix organic light emitting displays,” IEEE Trans. Electron Devices, vol. 48, no.7 pp. 1322-1325, July 2001.
[22]G. Gu and S. R. Forrest, “Design of flat-panel displays based on organic light- emitting devices,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4, No. 1, pp. 83-99, Jan./Feb. 1998.
[23]G. He, M. Pfeiffer, and K. Leo, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett., vol. 85, pp. 3911–3913, Oct. 2004.
[24]P. Servati, D. Striakhilev, and A. Nathan, “Above-threshold parameter extraction and modeling for amorphous silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 50, no. 11, pp. 2227–2235, Nov. 2003.
[25]P. Servati and A. Nathan, “Modeling of the static and dynamic behavior of hydrogenated amorphous silicon thin-film transistors,” J. Vac. Sci. Technol., pp. 1038–1042, May 2002.